

Development of novel rabbit monoclonal antibodies to characterize microglial activation states in murine models of Alzheimer's disease

INTRODUCTION

Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common form of dementia worldwide. Neuroinflammation is an important feature of AD pathology, but the precise contribution of neuroinflammation on disease progression is poorly understood. Microglia, the brain's resident macrophages, are likely to play an important role in initiating and maintaining neuroinflammatory responses that contribute directly or indirectly to AD etiology.

Several genome-wide association studies in human AD patients identified genes enriched or uniquely expressed in microglia. Moreover, single-cell RNA sequencing (scRNA-seq) studies identified multiple microglia-enriched genes that are upregulated in the context of disease, both in human AD tissue as well as mouse models of AD. Development of tools to these specific genes or gene products can be used to identify disease-associated microglial states and further our understanding of the specific neuroinflammatory responses that contribute to disease.

Here we have developed and validated a cohort of rabbit monoclonal antibodies that can be used to detect these microglial gene products. We used multiplexing techniques to establish microglial enrichment of these targets in mouse models of AD. Within this cohort, we highlight Cathepsin D, a lysosomal aspartyl protease involved in protein degradation that is enriched in microglia, particularly in the context of disease. Here we showcase Cathepsin D expression in both wild-type and a mouse model of AD, focusing attention on the co-localization of Cathepsin D with Iba1 positive microglia

We continue to develop a comprehensive portfolio of monoclonal antibodies to further characterize microglia cellular processes and activation states to understand the role of microglia in neurodegenerative diseases.

Diagram 1:

Disease associated microglia (DAM) transition from a homeostatic state to stage 1 and stage 2 (TREM2-dependent) DAM [1]. Key targets listed according to their role in each microglial stage.

REFERENCES

- Keren-Shaul, H. et al. (2017). Cell, 169(7), 1276-1290. 2] Ito, D. et al. (1998). Molecular Brain Research., 57(1), 1–9
- 3] Jurga, A.M. et al. (2020). Frontiers in Cellular Neuroscience, 14, 198–198.
- Satoh, J.-I. et al. (2016). *Neuropathology*, 36(1), 39–49. 5] Friker, L.L. et al. (2020). Cell Reports (Cambridge), 30(11), 3743–3754.
- 6] Ardestani, P.M. et al. (2017). Neuropharmacology, 116, 371–386.
- Tsai, A.P. et al. (2021). Neurobiology of Disease, 153, 105303–105303
-] Hüttenrauch, M. et al. (2018). Acta Neuropathologica Communications, 6(1), 108–108. 9] Tao,C.-C. et al. (2020). Cell Death and Differentiation, 27(1), 192–209.
- [10] Lowry, K.R. & Klegeris, A. (2018). Brain Research Bulletin, 139, 144–156

METHODS

- Recombinant monoclonal antibodies against identified genes enriched or uniquely expressed in microglia were analyzed on a mouse model of AD by immunofluorescence utilizing CST's Immunofluorescence Protocol. Samples were multiplexed using a combination of direct and indirect detection and a sequential labeling strategy (Diagram 2).
- Images captured by widefield, high-resolution imaging using a Leica SP8 confocal microscope.

Diagram 2:

Illustrated diagram showcasing key IF protocol steps for direct and indirect detection multiplexing utilizing unconjugated and fluorophore-conjugated antibodies. The image demonstrates incubating first with an unconjugated primary antibody (1), detecting primary antibodies with corresponding fluorophore-conjugated secondaries (2), blocking free secondary binding sites with appropriate host immunoglobulin (3) enabling co-staining with desired fluorophore-conjugated antibodies.

Table 1:

Key Antibodies Used

Iba1/AIF-1 (E4O4W) XP® Rabbit mAb (Alexa Fluor® 647 Conjugate) Iba1/AIF-1 (E4O4W) XP® Rabbit mAb (Alexa Fluor® 488 Conjugate) CD11b/ITGAM (E6E1M) Rabbit mAb TMEM119 (E3W5L) Rabbit mAb ASC/TMS1 (D2W8U) Rabbit mAb (Mouse Specific) CD68 (E3O7V) Rabbit mAb SHIP1 (E8M5D) Rabbit mAb GPNMB (E7U1Z) Rabbit mAb Galectin-3/LGALS3 (E7B6R) Rabbit mAb Cathepsin D (E7Z4L) XP® Rabbit mAb

Additional antibody markers can be found at cellsignal.com

For Research Use Only. Not For Use in Diagnostic Procedures

©2022 Cell Signaling Technology, Inc. Cell Signaling Technology, and CST are trademarks of Cell Signaling Technology, Inc. Alexa Fluor is a registered trademark of Life Technologies Corporation. All other trademarks are the property of their respective owners. Visit cellsignal.com/trademarks for more information.

Catalog # 78060 20825 17800 80821 67824 97778 79877 90205 89572 88239

lba1/AIF-1

lonized calcium-binding adaptor molecule (Iba1), also known as allograft inflammatory factor 1 (AIF-1), is a cytoplasmic calcium binding protein uniquely expressed in cells c monocytic lineage and is, therefore, widely used as a marker for microglia/macrophages in the brain [2].

Cluster of differentiation molecule (CD11b)/Integrin alpha M (ITGAM) ransmembrane protein xpressed by myeloid ineage cells, including macrophages and microalia [3].

ASC/TMS1 Apoptosis-associated speck-like protein containing a CARD (ASC) has been shown to accumulate inflammasome-activated macrophages, including microglia, and build up as aggregated called ASC specks [5].

Cluster 68, CD68. is a transmembrane protein widely used as marker of phagocytic activated microglia macrophages. CD68 has shown to be upregulated in mouse models of AD [6].

GPNMB Glycoprotein

nonmetastatic melanoma protein B (GPNMB) has been shown to localize population of microglial cells that surround amyloid plaques. In AD mouse models. GPNMB levels increase in ar age-dependent manner

In AD mouse models,

has been shown that microalial galectin-3 expression is induced s secrete microglia where directly interacts with Aß. promoting aggregation decreasing degradation [9].

Figure 1: Microglial targets imaged on a mouse model of AD by category Multiple microglial targets multiplexed and imaged on a mouse model of AD by category. Categories of shown microglial markers include general microglia markers, homeostatic microglia, stage 1 DAM (TREM2 independent), and Stage 2 DAM (TREM2 dependent). Images are labeled by stain color of each antibody used.

Figure 2. Cathepsin D is expressed in WT and AD mouse hippocampus

Arica Aiello, Rebecca Gray, Virginia E. Bain, Amrik Singh, Gregory Innocenti, Supriya Singh, Thorsten Wiederhold, Richard W. Cho | Cell Signaling Technology, Inc., Danvers MA 01923

Figure 1. Microglial targets imaged on a mouse model of AD

119 (TMEM119) is a cellsurface proteir and is an important to decipher marker

microglia from infiltrating

macrophages

neurodegenerative

disease models [4]

SHIP1 phosphatase. expressed by associated microglia [7]

Cathepsin D Cathepsin D is ubiquitously expressed lysosomal aspartyl protease involved microglia particularly in the context of disease. It suggested that Cathepsin may be involved in degradation of A β [10].

Figure 2: Confocal Tile Scan Analysis of Cathepsin D Confocal tile scan immunofluorescent analysis of brain from wild-type mouse (A) and an amyloid mouse model of AD (B) using Cathepsin D (green), Iba1/AIF-1 (red), and β -Amyloid (magenta).

Figure 3. Cathepsin D localizes to Iba1+ activated microglia surrounding amyloid plaques in AD mouse model

Figure 3: Confocal immunofluorescent analysis of Cathepsin D Confocal immunofluorescent analysis of brain from a wild-type mouse (A) and an amyloid mouse model of AD (B) using Cathepsin D (green), Iba1/AIF-1 (red), GFAP (cyan), and β-Amyloid (blue).

CONCLUSIONS

• Neuroinflammation is an important feature of AD pathology. Microglia have been implicated in disease through GWAS and scRNA-seq studies.

• We have developed a portfolio of rabbit monoclonal antibodies specific to these targets that have been validated in mouse models of AD.

• We show that Cathepsin D expression is increased in mouse models of AD and co-localizes with lba1+ microglia surrounding amyloid-beta plaques.

• These antibodies can be used to further characterize microglia cellular processes and activation states to further our understanding of the role microglia play in neurodegenerative diseases.

> Arica Aiello email: arica.aiello@cellsignal.com www.cellsignal.com/posters