INTRODUCTION

Three negative breast cancer (TNBC) is the most aggressive type of breast cancer and it has no approved targeted therapies. The disease is characterized by the lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). This lack of expression results in the requirement to circumvent traditional therapies which are not effective in treating TNBC. Previous research has shown the role of peptides and their specific reduction in this therapy has yet to be fully elucidated. The potential role of Acylation of lysine acetyltransferases and arginine methyltransferases has been investigated in TNBC. The research on this topic has shown potential promising results, however, further research is necessary to better understand the mechanism of action of these modified peptides. Previous studies have shown that peptides modified on lysine and arginine residues show promising results in TNBC. The current study investigates the potential of peptides modified on lysine and arginine residues for the treatment of TNBC.

METHODS

Acyltransferase and arginyl methyltransferase activity was assessed using a cell-based assay in vitro. The activity was measured using a colorimetric assay. The activity of these enzymes was also measured using a mass spectrometry-based assay. The results were analyzed using statistical methods to determine the significance of the results. The findings from the current study suggest that the modified peptides may have potential therapeutic applications for the treatment of TNBC.

CONCLUSIONS

The current study investigated the potential of peptides modified on lysine and arginine residues for the treatment of TNBC. The results showed that the modified peptides have potential therapeutic applications for the treatment of TNBC. The findings from the current study suggest that the modified peptides may have potential therapeutic applications for the treatment of TNBC. The modified peptides may be a new therapeutic approach for the treatment of TNBC.

REFERENCES