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Applications Key

While all of our antibodies are rigorously tested in a number of relevant applications, 
some products are more suitable for a specifi c application. This information is 
summarized in various lists and tables found throughout this guide.

Pathway Diagram Key

The pathway diagrams found in this guide and on our website have been assembled 
by CST scientists and outside experts to provide succinct and current overviews of 
selected signaling pathways. 

Diagram & Table Keys

“...the time has come for us...
to puzzle out, one protein at a 
time, how signals are really 
processed inside cells to create 
the marvelously functioning 
apparatus – the eukaryotic cell.”

Dr. Robert A. Weinberg
Daniel K. Ludwig Professor for Cancer Research, MIT

From the inception of the 
antibody as a research tool 
in the 1890s, to up-to-date 
research, applications, and 
tools, this is your complete 
resource for cellular research.

First Edition

CST Guide
GUIDE COVER PHOTO: 

Cellular Landscape: 

Vesicle Tra�  cking
Multiple levels shown of key path-
ways and structures involved in ER 
and Golgi-mediated tra�  cking and 
protein processing, including post-
translational modifi cations. 

This comprehensive guide includes:

•  Workfl ow tools to help you optimize your 
experimental design

•  Protocol guides and experimental troubleshooting

•  Updated signaling pathway diagrams reviewed by key 
opinion leaders

Order your copy now at:
www.cellsignal.com/exclusiveguide

www.cellsignal.com/cstlandscapes
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B Cell and T Cell Receptor Signaling and Adaptive Immunity
B and T lymphocytes mediate the humoral and cell-mediated immune responses, respectively, which 
make up the adaptive arm of the immune system. B cells mature in the bone marrow and di� erenti-
ate into antibody-secreting plasma cells. In contrast, T cells are thymus-derived and, as e� ector cells, 
orchestrate cell-mediated immunity.

The B cell receptor (BCR) is composed of a membrane-bound antibody (immunoglobulin or Ig) fl anked 
by Igα/Igβ (CD79A/CD79B) heterodimers. When membrane Ig binds antigen, the CD79 heterodimer 
transduces signals through its cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM) 
domains. The T cell receptor (TCR) consists of a membrane-bound αβ heterodimer (TCRαβ), four CD3 
chains (two CD3ε, one CD3γ, one CD3δ), and a ζ−chain homodimer. The TCRαβ dimer recognizes 
antigenic peptides, while the associated signaling chains transduce signals with their cytoplasmic ITAM 
domains. Thus, the lymphocyte antigen receptors use similar models of membrane-bound antigen 
receptors linked to signal-transducing accessory chains.

Signaling through the BCR and TCR involves activation of a number of Src family tyrosine kinases (Blk, 
Fyn, and Lyn in B cells and Fyn and Lck in T cells), which are responsible for phosphorylation of the 
receptor-associated ITAM motifs. Phosphorylated ITAMs act as docking sites for Syk family tyrosine 
kinases (Syk in B cells and Zap-70 in T cells). Activated Syk kinases amplify signals through phosphory-
lation of downstream adaptor proteins, thereby initiating a cascade of intracellular signaling molecules. 
In addition to mediating cell activation, lymphocyte receptor signaling drives B and T cell development, 
di� erentiation, proliferation, and survival.

Immunology and Infl ammation

TLR Signaling and Innate Immunity
The innate arm of the immune system consists of a host of immune cells and resistance mechanisms 
that act as the fi rst line of defense against invading pathogens. The toll-like receptors (TLRs) are a family 
of evolutionarily conserved pattern recognition receptors (PRRs) that recognize the pathogen-associated 
molecular patterns (PAMPs) found in microbial pathogens. TLR1, 2, 4, 5, and 6 are expressed at the 
cell surface, while TLR3, 7, 8, and 9 have been shown to localize to intracellular vesicles. Activation 
of TLRs through ligand binding triggers a signaling cascade involving a variety of intracellular signaling 
adaptors including MyD88, IRAKs, and TRAF6. TLR signaling leads to the activation of the MAP kinase, 
NF-κB, and IRF signaling pathways, which mediate infl ammation through the production of infl ammatory 
cytokines, type I IFN, chemokines, and antimicrobial peptides. TLR signaling in innate immune cells, par-
ticularly dendritic cells, leads to their activation and subsequent induction of adaptive immune responses.

Syk (D3Z1E) XP® Rabbit 
mAb #13198: WB analy-
sis of extracts from various 
cell lines using #13198.

Syk is expressed 
in B cells and 
other cell lines.
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Zap-70 (D1C10E) XP® Rabbit mAb (Alexa Fluor® 
488 Conjugate) #9473: Flow cytometric analysis of 
Ramos (B cells; blue) and Jurkat (T cells; green) cells 
using #9473. 

Zap-70 is expressed in T cells.
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Toll-like Receptor 2 (E1J2W) Rabbit mAb (Mouse Specifi c) #13744: WB analysis 
of extracts from Raw 264.7 cells, mouse bone marrow-derived macrophages (BMDM), 
and mouse bone marrow-derived dendritic cells (BMDC) using #13744.
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Jak/Stat Signaling
The Jak/Stat signaling pathway is utilized by a large number of cytokines, growth factors, and hormones 
upon binding to their specifi c receptors. Receptor-mediated tyrosine phosphorylation of Jak family 
members triggers phosphorylation of Stat proteins, resulting in their nuclear translocation, binding 
to specifi c DNA elements, and subsequent activation of transcription. The remarkable range and 
specifi city of responses regulated by the Stats is determined, in part, by the tissue-specifi c expression 
of di� erent cytokine receptors, Jaks, and Stats, as well as by the combinatorial coupling of various 
Stat members to di� erent receptors. Stat1 is activated in response to a large number of ligands and is 
essential for responsiveness to IFN-α and IFN-γ. Stat3 is constitutively activated in a number of human 
tumors and possesses both oncogenic potential and antiapoptotic activities. Stat4 has been most ex-
tensively investigated as a mediator of IL-12 responses. Stat5 is activated in response to a wide variety 
of ligands including IL-2, GM-CSF, growth hormone, and prolactin.

NF-κB Signaling
Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in infl ammatory and 
immune responses. There are fi ve family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/
p50), and NF-κB2 (p100/p52). Both p105 and p100 are co-translationally processed by the protea-
some to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes 
that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm 
by IκB inhibitory proteins. NF-κB-activating agents can induce the phosphorylation of IκB proteins, 
targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to 
enter the nucleus where it regulates gene expression. NIK and IKKα (IKK1) regulate the phosphorylation 
and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus.

BAGrowth factor 
stimulation results 
in phosphorylation 
of Stat5 at Tyr694.

Phospho-Stat5 (Tyr694) (D47E7) 
XP® Rabbit mAb #4322: Confocal 
IF analysis of A-431 cells, treated 
with Human Epidermal Growth Factor 
(hEGF) #8916 (A) or untreated (B), 
using #4322 (green) and Pan-Keratin 
(C11) Mouse mAb #4545 (red).

TNF-α treatment 
results in translocation 
of NF-κB p65 (RelA) to 
the nucleus.

NF-κB p65 (D14E12) XP® Rabbit 
mAb #8242: Confocal IF analysis of 
HT-1080 cells, untreated (top) or treated 
with hTNF-α #8902 (20 ng/ml, 20 min) 
(bottom), using #8242 (green). Actin 
fi laments were labeled with DY-554 
phalloidin (red). Blue pseudocolor = 
DRAQ5® #4084 (fl uorescent DNA dye).

NF-κB1 p105/p50 associates with promoters for 
IκBα and IL-8, but not with α satellite repeat element.
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NF-κB1 p105/p50 (D4P4D) 
Rabbit mAb #13586

Normal Rabbit 
IgG #2729

NF-κB1 p105/p50 (D4P4D) Rabbit mAb #13586: Chromatin IPs were 
performed with cross-linked chromatin from 4 x 106 HeLa cells treated 
with Human Tumor Necrosis Factor-α (hTNF-α) #8902 (30 ng/ml, 1 hr) 
and either 10 μl of #13586 or 2 μl of Normal Rabbit IgG #2729 using 
SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. The 
enriched DNA was quantifi ed by real-time PCR using SimpleChIP® Hu-
man IκBα Promoter Primers #5552, human IL-8 promoter primers, and 
SimpleChIP® Human α Satellite Repeat Primers #4486. The amount of 
immunoprecipitated DNA in each sample is represented as a percent of 
the total input chromatin.

Cytokine stimulation results in 
phosphorylation of Stat3 at Tyr705.

Phospho-Stat3 (Tyr705) (D3A7) XP® Rabbit mAb (Alexa Fluor® 
488 Conjugate) #4323: Flow cytometric analysis of Jurkat cells, 
untreated (blue) or IFN-α treated (green), using #4323 compared to 
isotype control antibody (red). Ev

en
ts

Phospho-Stat3 (Tyr705) 
(Alexa Fluor® 488 Conjugate)

www.cellsignal.com/cstimmunology
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Target M P E S C

A20/TNFAIP3 • •
ABIN-1 • •
ADAP •
AID •
AIM2 • •
Aiolos •
AML1 • •
Phospho-AML1 
(Ser249) •
β2-microglobulin • • •
BACH2 •
BAFF •
Basigin/EMMPRIN • •
BATF •
BCL6 • •
Bcl10 •
Blimp-1/PRDI-BF1 •
Blk •
BLNK •
Phospho-BLNK 
(Tyr96) •
Btk • •
Phospho-Btk 
(Ser180) •
Phospho-Btk 
(Tyr223) •
CARD9 •
CARD11 • •
Phospho-CARD11 
(Ser652) •
CBFβ •
CCR2 •
CD3ε •
CD4 •
CD8 •

Target M P E S C

CD9 •
CD10 •
CD13 •
CD19 •
Phospho-CD19 
(Tyr531) •
CD31 (PECAM-1) •
CD34 •
CD44 • • • •
CD45 •
CD46 •
CD79A • •
Phospho-CD79A 
(Tyr182) •
CD82 • •
CIITA •
CISH •
CrkL •
Phospho-CrkL 
(Tyr207) •
Cytokine Receptor 
Common β-Chain •
Cox1 • •
Cox2 • • • •
Cyclophilin A •
DAP12 •
DC-SIGN • •
Dectin-1 •
E2A • •
ERC1 •
ERC1α •
ETO •
Evi-1 • •
Fgr •
FoxP3 •

Target M P E S C

Fyn • •
Galectin-1/LGALS1 • •
Galectin-3/LGALS3 •
GIMAP5 •
GP130 •
GRK6 •
Helios •
HPK1 •
HS1 • •
Phospho-HS1 
(Tyr397) • • •
IFI16 •
IFIT1 •
IFITM1 •
IFITM2 •
IFN-α •
IFN-γ • •
IGBP1 •
Ikaros • •
IκBα • • • •
Phospho-IκBα 
(Ser32) • • •
Phospho-IκBα 
(Ser32/Ser36) •
IκBα (Amino-
terminal Antigen) • •
IκBα (Carboxy-
terminal Antigen) •
IκBβ • •
Phospho-IκBε 
(Ser18/22) •
IκBζ •
IKKα • • • •
Phospho-IKKα 
(Ser176)/IKKβ 
(Ser177) 

•

Commonly Studied Immunology and Infl ammation Targets
These protein targets represent 
key nodes within immunology and 
infl ammation signaling pathways and 
are commonly studied in immunology 
and infl ammation research. Primary 
antibodies, antibody conjugates, and 
antibody sampler kits containing these 
targets are available from CST.

Listing as of September 2014. See our 
website for current product information.

M Monoclonal Antibody

P Polyclonal Antibody

E PathScan® ELISA Kits

S SignalSilence® siRNA

C Antibody Conjugate

Immune Checkpoints
Activation of T lymphocytes by antigen-presenting cells (APCs) requires engagement of the T cell 
receptor with MHC class I or II molecules and co-stimulatory signals generated from CD28 (on T cells) 
binding to CD80 or CD86 (on APCs). However, under certain circumstances, such as maintaining 
self-tolerance or preventing collateral tissue damage, T cell engagement is coupled with inhibitory 
signals that repress T cell activation and response, known as immune checkpoints. Immune checkpoint 
proteins such as PD-1 and CTLA-4, which are commonly upregulated in infi trating T cells, bind their 
corresponding ligands, PD-L1 and CD80/86 respectively, which are upregulated in cancer cells as a 
means to evade immune detection and downregulate T cell response. Activating antitumor immunity 
through the blockade of immune checkpoint proteins has become a promising therapeutic strategy for 
the treatment of cancer.

Select Reviews
Borroto, A., Abia, D., and Alarcón, B. (2014) Immunol. Lett. 161, 113−117.  •  Burger, J.A. and Chiorazzi, N. (2013) Trends Im-
munol. 34, 592−601.  •  Dorritie, K.A., Redner, R.L., and Johnson, D.E. (2014) Adv. Biol. Regul. 56, 30–44.  •  Fu, G., Rybakin, V., 
Brzostek, J., et al. (2014) Trends Immunol. 35, 311−318.  •  Gasparini, C., Celeghini, C., Monasta, L., et al. (2014) Cell Mol. Life 
Sci. 71, 2083−2102.  •  Gerondakis, S., Fulford, T.S., Messina, N.L., et al. (2014) Nat. Immunol. 15, 15−25.  •  Harwood, N.E. and 
Batista, F.D. (2010) Annu. Rev. Immunol. 28, 185–210.  •  Kawakami, Y., Yaguchi, T., Park, J.H., et al. (2013) Front. Oncol. 3, 136.  
•  Maddaly, R., Pai, G., Balaji, S., et al. (2010) FEBS Lett. 584, 4883–4894.  •  Mifsud, E.J., Tan, A.C., and Jackson, D.C. (2014) 
Front. Immunol. 5, 79.  •  Pardoll, D.M. (2012) Nat. Rev. Cancer 12, 252–264.  •  Reuven, E.M., Fink, A., and Shai, Y. (2014) 
Biochim. Biophys. Acta. 1838, 1586−1593.  •  Vanneman, M. and Drano� , G. (2012) Nat. Rev. Cancer 12, 237−251.

PD-L1 (E1L3N®) XP® Rabbit mAb 
#13684: IHC analysis of para�  n-embed-
ded human lung carcinoma using #13684.

PD-L1 is expressed 
in lung carcinoma.
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Target M P E S C

Phospho-IKKα/β 
(Ser176/180) • •
IKKβ • • •
Phospho-IKKβ 
(Ser177/181) •
IKKγ • •
Phospho-IKKγ 
(Ser376) •
IKKε • •
Phospho-IKKε 
(Ser172) •
IL-1β •
IL-1RA •
IL-2 •
IL-2Rα • •
IL-2Rβ •
Mouse IL-3 
Neutralizing •
Human IL-4 
Neutralizing •
IL-4 •
IL-6 •
IL10 •
IL-17A •
Human IL-17A 
Neutralizing •
IL17R • •
IDO •
IRAK1 • • • •
Phospho-IRAK1 
(Thr209) •
Phospho-IRAK1 
(Thr387) •
IRAK2 •
IRAK4 •
Phospho-IRAK4 
(Thr345/Ser346) • •
IRAK-M •
IRF-1 • •
IRF-2 •
IRF-3 • •
Phospho-IRF-3 
(Ser396) •
IRF-4 • •
IRF-5 • •
IRF-6 •
IRF-7 • • •
Phospho-IRF-7 
(Ser471/472) •
Phospho-IRF-7 
(Ser477) •
IRF-8 •
Itk •
Jak1 • •
Phospho-Jak1 
(Tyr1022/1023) •
Jak2 • • •
Phospho-Jak2 
(Tyr221) •
Phospho-Jak2 
(Tyr1007) •
Phospho-Jak2 
(Tyr1007/1008) • •

Target M P E S C

Phospho-Jak2 
(Tyr1008) • •
Jak3 • •
Phospho-Jak3 
(Tyr980/Tyr981) •
Langerin •
LAT •
Phospho-LAT 
(Tyr171) •
Phospho-LAT 
(Tyr191) • •
Lck • •
Phospho-Lck 
(Tyr505) • •
LGP2 •
LITAF •
5-Lipoxygenase •
Phospho-5-Lipoxy-
genase (Ser271) •
Phospho-5-Lipoxy-
genase (Ser663) •
LRF/Pokemon •
Lsp1 •
Lyn • •
Phospho-Lyn 
(Tyr507) •
MALT1 •
Mannose Receptor •
MAVS •
MCP-1 mouse •
MDA-5 •
MEIS1/2 •
Miz-1 • •
MNDA • •
MyD88 • •
Myeloperoxidase •
NALP1 •
NDP52 • •
NFAT1 • •
NFAT2 •
NFAT3 •
NFAT4 •
NF-κB p65 • • • •
Phospho-NF-κB 
p65 (Ser468) •
Phospho-NF-κB 
p65 (Ser536) • • • •
Acetyl-NF-κB p65 
(Lys310) • •
Methyl-NF-κB p65 
(Lys310) •
NF-κB p105 •
Phospho-NF-κB 
p105 (Ser932) •
NF-κB p105/p50 • •
NF-κB2 p100/p52 • •
Phospho-NF-κB2
p100/p52 
(Ser866/Ser870)

•

NIK •
NLRC4 •
NLRP3 •
NLRX1 •
Nod1 •

Target M P E S C

NOS (pan) •
iNOS • • •
NTAL/LAB • •
Phospho-p40phox 
(Thr154) •
p47phox • •
p67phox •
Pbx1 •
PD-L1 •
PIAS1 •
PIAS3 • • •
PIAS4 •
Pim-1 • •
Pim-2 •
Pim-3 •
Pirin •
Prolactin Receptor •
PTPN22 •
PU.1 • • •
RAG1 •
RAGE •
RAGE 1 • •
RANK •
RANK Ligand •
RANTES •
c-Rel • • •
RelB • •
Phospho-RelB 
(Ser552) • • •
Rig-I • •
RIP • •
RIP2 • •
Phospho-RIP2 
(Ser176) • •
RIP3 • •
RIP4 •
SAMHD1 •
SARM1 •
SDF1 • •
SH2D1A • •
SHIP1 • •
Phospho-SHIP1 
(Tyr1020) •
SHIP2 • •
Phospho-SHIP2 
(Tyr986/Tyr987) •
Phospho-SHIP2 
(Tyr1135) •
SHP-1 •
Phospho-SHP-1 
(Tyr564) •
SINTBAD •
SLP76 •
Phospho-SLP76 
(Ser376) •
SOCS1 •
SOCS2 •
SOCS3 •
Stat1 • • •
Phospho-Stat1 
(Tyr701) • • •

Select Citations: 
Mauer, J. et al. (2014) Signaling by 
IL-6 promotes alternative activation 
of macrophages to limit endotoxemia 
and obesity-associated resistance to 
insulin. Nat. Immunol. 15, 423−430.

Kothari, P. et al. (2014) IL-
6-mediated induction of matrix 
metalloproteinase-9 is modulated 
by JAK-dependent IL-10 expression 
in macrophages. J. Immunol. 192, 
349−357.

Zhou, C. et al. (2014) PTTG acts as 
a STAT3 target gene for colorectal 
cancer cell growth and motility. 
Oncogene 33, 851−861. 

Kryczek, I. et al. (2014) IL-22(+)
CD4(+) T cells promote colorectal 
cancer stemness via STAT3 transcrip-
tion factor activation and induction 
of the methyltransferase DOT1L. 
Immunity 40, 772−784.

Mayeur, C. et al. (2014) The type I 
BMP receptor Alk3 is required for the 
induction of hepatic hepcidin gene 
expression by interleukin-6. Blood 
123, 2261−2268.

Becker, T.M. et al. (2014) Mutant B-
RAF-Mcl-1 survival signaling depends 
on the STAT3 transcription factor. 
Oncogene 33, 1158−1166.

Xiang, M. et al. (2014) STAT3 induc-
tion of miR-146b forms a feedback 
loop to inhibit the NF-kappaB to IL-6 
signaling axis and STAT3-driven can-
cer phenotypes. Sci. Signal. 7, ra11.

Wang, Y. et al. (2014) GdX/UBL4A 
specifi cally stabilizes the TC45/
STAT3 association and promotes 
dephosphorylation of STAT3 to 
repress tumorigenesis. Mol. Cell 53, 
752−765.

Schmidt, J.W. et al. (2014) Stat5 
regulates the phosphatidylinositol 
3-kinase/Akt1 pathway during 
mammary gland development and 
tumorigenesis. Mol. Cell Biol. 34, 
1363−1377. 

Nagashima, H. et al. (2014) The 
adaptor TRAF5 limits the di� erentia-
tion of infl ammatory CD4(+) T cells 
by antagonizing signaling via the 
receptor for IL-6. Nat. Immunol. 15, 
449−456.

CST antibodies for Phospho-Stat3 
(Tyr705) have been cited over 285 times 
in high-impact, peer-reviewed publications 
from the global research community.

285
2012–2014 CITATIONS

www.cellsignal.com/cstimmunology
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Target M P E S C

Phospho-Stat1 
(Ser727) • •
Stat2 •
Phospho-Stat2 
(Tyr690) •
Stat3 • • • • •
Phospho-Stat3 
(Tyr705) • • • •
Phospho-Stat3 
(Ser727) • • •
Acetyl-Stat3 
(Lys685) •
Stat3α • •
Stat4 •
Phospho-Stat4 
(Tyr693) • • •
Stat5 • • • •
Phospho-Stat5 
(Tyr694) • • • •
Stat5a •
Stat6 • • • •
Phospho-Stat6 
(Tyr641) • • • •
STING •
Syk • •
Phospho-Syk 
(panTyr) •

Target M P E S C

Phospho-Syk 
(Tyr323) •
Phospho-Syk 
(Tyr525/526) • • • •
TAL1 •
TAP1 •
TAP2 •
T-bet/TBX21 
(V365) • •
TBK1/NAK • •
Phospho-TBK1/
NAK (Ser172) • •
Tec •
THEMIS •
ThPOK •
TIRAP •
Toll-like Receptor 1 •
Toll-like Receptor 2 • •
Toll-like Receptor 3 • •
Toll-like Receptor 4 •
Toll-like Receptor 6 •
Toll-like Receptor 7 • •
Toll-like Receptor 8 •
Toll-like Receptor 9 • •
Human TNF-α 
Neutralizing •

Target M P E S C

Mouse TNF-α Neu-
tralizing •
TNF-α • • • •
TNF-R1 • •
Tollip •
Phospho-TPOR 
(Tyr626) •
TREX1 •
TRIF •
TWEAK •
TWEAK Receptor/
Fn14 •
Tyk2 • • •
Phospho-Tyk2 
(Tyr1054/1055) •
VCAM1 •
Yes •
ZAP70 • • •
Phospho-ZAP70 
(Tyr319) •
Phospho-Zap-70 
(Tyr319)/Syk 
(Tyr352) 

• • •

Phospho-ZAP70 
(Tyr493) •

Jak Mutants Cytokine Receptor Disease References

Jak2 V617F EpoR, TpoR (MPL), G-CSFR Myeloproliferative neoplasms 
(MNPs), PV, ET, PMF

1–5

Jak2 K539L, exon 12 mutants EpoR MNP: PV 6

Jak2 T875N Undetermined AML (AMKL) 7

Jak3 A572V Undetermined AML (AMKL) (cell lines) 8

Jak1 V658F, Jak1 A634D, R879H, R724S IL2R, IL9R, other undetermined T-ALL 9,10

Jak1 R683G/S Jak2 DIREED TLSPR Pediatric and Down syndrome ALL 11–15

Jak2 V617I, Jak2 R564Q, Jak2 S755R/ R938Q TpoR (MPL) Hereditary thrombocytosis 16–18

Receptor Mutants Cytokine Receptor Disease References

TpoR W515L/K/A Jak2 MPNs: ET, PMF 19–21

TpoR S505N 22

TpoR S487A 23

TLSPR F232S / TLSPR translocations Jak2 R683 mutants Pediatric and Down syndrome ALL 13, 24–26

References: (1) James, C. et al. (2005) Nature 434, 1144–1148.  •  (2) Baxter, E.J. et al. (2005) Lancet 365, 1054–1061.  •  
(3) Kralovics, R. et al. (2005) N. Engl. J. Med. 352, 1779–1790.  •  (4) Levine, R.L. et al. (2005) Cancer Cell 7, 387–397.  •  (5) 
Vainchenker, W. et al. (2008) Semin. Cell Dev. Biol. 19, 385–393.  •  (6) Scott, L.M. et al. (2007) N. Engl. J. Med. 356, 459–468.  
•  (7) Mercher, T. et al. (2006) Blood 108, 2770–2779.  •  (8) Walters, D.K. et al. (2006) Cancer Cell 10, 65–75.  •  (9) Flex, E. et 
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Jak and Cytokine 
Receptor Mutants
This table lists Jak and cytokine receptor 
mutations found in various cancers, 
along with corresponding publications.
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Ligand Receptor Jak-Kinase Other Tyrosine Kinases Stat Family Members

IL-6 IL-6Rα+gp130 Jak1,2, Tyk2 Hck Stat1, Stat3

IL-11 IL-11R+gp130 Jak1,2, Tyk2 Src, Yes Stat3

CNTF, CT-1, LIF, OSM CNTFR+gp130, CT-1R+gp130, 
LIFR+gp130, OSMR+gp130

Jak1,2, Tyk2 Src family Predominant: Stat3 
Secondary: Stat1,5

G-CSF G-CSFR Jak2, Tyk2 Lyn Stat3

IL-12 (p40+p35) IL-12Rβ1+IL-12Rβ2 Jak2, Tyk2 Lck Stat4

Leptin LeptinR Jak2 Not determined Stat3,5,6

IL-3 IL-3Rα+βc Jak2 Fyn, Hck, Lyn Stat3,5,6

IL-5 IL-5R+βc Jak2 Btk Stat3,5,6

GM-CSF GM-CSFR+βc Jak2 Hck, Lyn Stat3,5

Angiotensin GPCR Jak2, Tyk2 Stat1,2,3

Serotonin GPCR Jak2 Stat3

α-Thrombin GPCR Jak2 Stat1,3

Chemokines CXCR4 Jak2,3

IL-2 IL-2Rα+IL-2Rb+γc Jak1,2,3 Fyn, Hck, Lck, Syk, Tec Stat3,5

IL-4 IL-4Rα+γcR or IL-4Rα+IL-13Rα1 Jak1,3 Lck, Tec Stat6

IL-7 IL-7R+γc Jak1,3 Lyn Stat3,5

IL-9 IL-9R+γc Jak1,3 Not determined Stat1,3,5

IL-13 IL-13Rα1+ IL-4Rα Jak1,2, Tyk2 Ctk Stat6

IL-15 IL-15Rα+IL-2Rβ+γc Jak1,3 Lck Stat3,5

IL-19 IL-20Rα+IL-20Rβ Jak1, ? Stat3

IL-20 IL-20Rα+IL-20Rβ, IL-22R+IL-20Rβ Jak1, ? Stat3

IL-21 IL-21R+γc Jak1,3 Stat1,3,5

IL-22 IL-22R+IL-10Rβ Jak1, Tyk2 Stat1,3,5

IL-23 (p40+p19) IL-12Rβ1+IL-23R Jak2 Tyk2 Stat4

IL-24 same as IL-20 Jak1, ? Stat3

IL-26 IL-20Rα+IL-10Rβ Jak1, Tyk2 Stat3

IL-27 (EBI3+p28) gp130+WSX1 Jak1,2, Tyk2 Stat1,2,3,4,5

IL-28A, IL-28B, IL-29 IL-28R+IL-10Rβ Jak1, Tyk2 Stat1,2,3,4,5

IL-31 IL-31Rα+OSMR Jak1,2, Tyk2 Stat1,3,5

IL-35 (p35+EBI3) gp130+WSX1 Jak1,2, Tyk2 Stat1,3,5

GH GHR Jak2 Src family Stat3,5 (mainly Stat5a)

Tpo TpoR (c-Mpl) Jak2, Tyk2 Lyn Stat1,3,5

Epo, Pro EpoR, ProlactinR Jak2 Src Family Stat5 (mainly Stat5a)

Interferon (IFNα/β) IFNAR1+IFNAR2 Jak1, Tyk2 Lck Predominant: Stat1,2 
Secondary: Stat3,4,5

IFN-γ IFN-gR1+IFN-γR2 Jak1, Jak2 Hck, Lyn Stat1

IL-10 IL-10Rα+ IL-10Rβ Jak1, Tyk2 Not determined Stat1,3,5

TLSP TLSPR and IL-7R Jak1, possibly 
Jak2  

Not determined Stat3,5

EGF EGFR Jak1 EGFR, Src Stat1,3,5

PDGF PDGFR Jak1,2 PDGFR, Src Stat1,3,5

Jak/Stat 
Utilization
This table lists the combinatorial use 
of tyrosine kinases and Stat proteins 
in cytokine/growth factor signaling.

© 2002–2014 Cell Signaling Technology, Inc.
We would like to thank Prof. Stefan Constantinescu, Ludwig Institute for Cancer Research, Brussels, Belgium for contributing to this table.

www.cellsignal.com/csttables

Please visit our website to learn more about Protein Kinases. www.cellsignal.com/cstkinases
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The B cell antigen receptor (BCR) is composed of membrane immunoglobulin (mIg) molecules and associated Igα/Igβ (CD79a/CD79b) heterodimers (α/β). The mIg subunits 
bind antigen, resulting in receptor aggregation, while the α/β subunits transduce signals to the cell interior. BCR aggregation rapidly activates the Src family kinases Lyn, 
Blk, and Fyn as well as the Syk and Btk tyrosine kinases. This initiates the formation of a ‘signalosome’ composed of the BCR, the aforementioned tyrosine kinases, adaptor 
proteins such as CD19 and BLNK, and signaling enzymes such as PLCγ2, PI3K, and Vav. Signals emanating from the signalosome activate multiple signaling cascades that 
involve kinases, GTPases, and transcription factors. This results in changes in cell metabolism, gene expression, and cytoskeletal organization. The complexity of BCR signal-
ing permits many distinct outcomes, including survival, tolerance (anergy) or apoptosis, proliferation, and di� erentiation into antibody-producing cells or memory B cells. The 
outcome of the response is determined by the maturation state of the cell, the nature of the antigen, the magnitude and duration of BCR signaling, and signals from other 
receptors such as CD40, the IL-21 receptor, and BAFF-R. Many other transmembrane proteins, some of which are receptors, modulate specifi c elements of BCR signaling. 
A few of these, including CD45, CD19, CD22, PIR-B, and FcγRIIB1 (CD32), are indicated here in yellow. The magnitude and duration of BCR signaling are limited by negative 
feedback loops including those involving the Lyn/CD22/SHP-1 pathway, the Cbp/Csk pathway, SHIP, Cbl, Dok-1, Dok-3, FcγRIIB1, PIR-B, and internalization of the BCR. In 
vivo, B cells are often activated by antigen-presenting cells that capture antigens and display them on their cell surface. Activation of B cells by such membrane-associated 
antigens requires BCR-induced cytoskeletal reorganization. Please refer to the diagrams for the PI3K/Akt signaling pathway, the NF-κB signaling pathway, and the regulation 
of actin dynamics for more details about these pathways.

Select Reviews:
Dal Porto, J.M., Gauld, S.B., Merrell, K.T., et al. (2004) Mol. Immunol. 41, 599–613.  •  Goodnow, C.C., Vinuesa, C.G., Randall, K.L., et al. (2010) Nat. Immunol. 11, 
681–688.  •  Harwood, N.E. and Batista, F.D. (2010) Annu. Rev. Immunol. 28, 185–210.  •  Harwood, N.E. and Batista, F.D. (2008) Immunity 28, 609–619.  •  Kurosaki, T., 
Shinohara, H., and Baba, Y. (2010) Annu. Rev. Immunol. 28, 21–55.  •  Szydłowski, M., Jabłońska, E., and Juszczyński, P. (2014) Int. Rev. Immunol. 33, 146–157.

B Cell Receptor Signaling

© 2002–2014 Cell Signaling Technology, Inc.  •  We would like to thank Prof. Michael R. Gold, University of British Columbia, Vancouver, British Columbia, Canada for reviewing this diagram.
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T Cell Receptor Signaling

Tumor cells employ multiple defense strategies to evade detection by the immune system. One common strategy, upregulation of immune checkpoint proteins and ligands, takes 
advantage of a natural immune mechanism for self-tolerance and prevention of collateral tissue damage. Immune checkpoint proteins, such as PD-1, CTLA-4, and many others, 
are located on T cells and engage with their corresponding ligand on tumor cells or dendritic cells, sending inhibitory signals that repress T cell activation or response. One of 
the fi rst discovered checkpoint proteins, CTLA-4, plays a role at the stage of T cell priming by binding to the CD28 ligands CD80 or CD86 to prevent co-stimulatory signals 
necessary for T cell activation. In contrast, the PD-1/PD-L1 checkpoint acts later in the process, inhibiting anti-tumor immune responses by e� ector T cells such as CD4+ T 
helper 1 (Th1) cells and CD8+ cytotoxic T lymphocytes (CTLs), leading to decreases in IFNγ production and cytolytic activity. Upregulation of PD-L1 expression on the tumor cell 
surface is mediated by IFNγR signaling to Stat1, as well as oncogenic signaling through several receptor tyrosine kinases (EGFR, ALK, ROS, HER2, and others) to activate the 
MAPK, Akt, and Stat3 pathways. 

Cells in the tumor microenvironment can also infl uence tumor progression. FoxP3+/CD4+ T regulatory cells (TRegs) and myeloid-derived suppressor cells (MSCs) secrete im-
munosuppressive cytokines IL-10 and TGF-β to inhibit the activity of Th1 cells and CTLs. Natural killer (NK) cells release cytotoxic granules against the tumor cell and secrete 
IFNγ, which stimulates surrounding pro-infl ammatory M1 macrophages. Pro-tumorigenic M2 macrophages suppress anti-tumor immune responses via production of IL-10 
and TGF-β and promote metastasis through release of MMPs. MMPs and TGF-β are also released by surrounding mast cells.

Select Reviews:
Burbach, B.J., Medeiros, R.B., Mueller, K.L., and Shimizu, Y. (2007) Immunol. Rev. 218, 65–81.  •  Chen, L. and Flies, D.B. (2013) Nat. Rev. Immunol. 13, 227–242.  •  
Cheng, J., Montecalvo, A., and Kane, L.P. (2011) Immunol. Res. 50, 113–117.  •  Cronin, S.J. and Penninger, J.M. (2007) Immunol. Rev. 220, 151–168.  •  Fracchia, K.M., 
Pai, C.Y., and Walsh, C.M. (2013) Front Immunol. 4, 324.  •  Marsland, B.J. and Kopf, M. (2008) Trends Immunol. 29, 179–185.  •  Thome, M. (2008) Nat. Rev. Immunol. 8, 
495–500.

© 2004–2014 Cell Signaling Technology, Inc.  •  We would like to thank Prof. Sankar Ghosh, Columbia University, New York, NY for reviewing this diagram.

CHAPTER 07: IMMUNOLOGY AND INFLAMMATION
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Toll-like Receptor Signaling

Toll-like receptors (TLRs) recognize distinct pathogen-associated molecular patterns and play a critical role in innate immune responses. They participate in the fi rst line of 
defense against invading pathogens and play a signifi cant role in infl ammation, immune cell regulation, survival, and proliferation. To date, 11 members of the TLR family 
have been identifi ed, of which TLR1, TLR2, TLR4, TLR5, TLR6, and TLR11 are located on the cell surface and TLR3, TLR7, TLR8, and TLR9 are localized to the endosomal/
lysosomal compartment. The activation of the TLR signaling pathway originates from the cytoplasmic Toll/IL-1 receptor (TIR) domain that associates with a TIR domain-con-
taining adaptor, MyD88. Upon stimulation with ligands, MyD88 recruits IL-1 receptor-associated kinase-4 (IRAK-4) to TLRs through interaction of the death domains of both 
molecules. IRAK-1 is activated by phosphorylation and associates with TRAF6, thereby activating the IKK complex and leading to activation of MAP kinases (JNK, p38 MAPK) 
and NF-κB. Tollip and IRAK-M interact with IRAK-1 and negatively regulate the TLR-mediated signaling pathways. Additional modes of regulation for these pathways include 
TRIF-dependent induction of TRAF6 signaling by RIP1 and negative regulation of TIRAP-mediated downstream signaling by ST2L, TRIAD3A, and SOCS1. Activation of MyD88-
independent pathways occurs via TRIF and TRAF3, leading to recruitment of IKKε/TBK1, phosphorylation of IRF3, and expression of interferon-β. TIR domain containing 
adaptors such as TIRAP, TRIF, and TRAM regulate TLR-mediated signaling pathways by providing specifi city for individual TLR signaling cascades. TRAF3 plays a critical role in 
the regulation of both MyD88-dependent and TRIF-dependent signaling via TRAF3 degradation, which activates MyD88-dependent signaling and suppresses TRIF-dependent 
signaling (and vice versa).

Select Reviews:
Barton, G.M. and Kagan, J.C. (2009) Nat. Rev. Immunol. 9, 535–542.  •  Blasius, A.L. and Beutler, B. (2010) Immunity 32, 305–315.  •  Kawai, T., and Akira, S. (2010) Nat. 
Immunol. 11, 373–384.  •  Lester, S.N. and Li, K. (2014) J. Mol. Biol. 426, 1246–1264.  •  Li, X., Jiang, S., and Tapping, R.I. (2010) Cytokine 49, 1–9.  •  McGettrick, A.F. 
and O’Neill, L.A. (2010) Curr. Opin. Immunol. 22, 20–27.  •  Miggin, S.M. and O’Neill, L.A. (2006) J. Leukoc. Biol. 80, 220–226.  •  Pasare, C. and Medzhitov, R. (2005) 
Adv. Exp. Med. Biol. 560, 11–18.  •  Reuven, E.M., Fink, A., and Shai, Y. (2014) Biochim. Biophys. Acta. 1838, 1586–1593.

© 2009–2014 Cell Signaling Technology, Inc.  •  We would like to thank Dr. Pranoti Mandrekar, University of Massachusetts Medical School, Worcester, MA, for reviewing this diagram.
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Jaks and Stats are critical components of many cytokine receptor systems; regulating growth, survival, di� erentiation, and pathogen resistance. An example of these path-
ways is shown for the IL-6 (or gp130) family of receptors, which coregulate B cell di� erentiation, plasmacytogenesis, and the acute phase reaction. Cytokine binding induces 
receptor dimerization, activating the associated Jaks, which phosphorylate themselves and the receptor. The phosphorylated sites on the receptor and Jaks serve as docking 
sites for the SH2-containing Stats, such as Stat3, and for SH2-containing proteins and adaptors that link the receptor to MAP kinase, PI3K/Akt, and other cellular pathways.

Phosphorylated Stats dimerize and translocate into the nucleus to regulate target gene transcription. Members of the suppressor of cytokine signaling (SOCS) family dampen 
receptor signaling via homologous or heterologous feedback regulation. Jaks or Stats can also participate in signaling through other receptor classes, as outlined in the Jak/
Stat Utilization Table. Researchers have found Stat3 and Stat5 to be constitutively activated by tyrosine kinases other than Jaks in several solid tumors.

The Jak/Stat pathway mediates the e� ects of cytokines, like erythropoietin, thrombopoietin, and G-CSF, which are protein drugs for the treatment of anemia, thrombocytope-
nia, and neutropenia, respectively. The pathway also mediates signaling by interferons, which are used as antiviral and antiproliferative agents. Researchers have found that 
dysregulated cytokine signaling contributes to cancer. Aberrant IL-6 signaling contributes to the pathogenesis of autoimmune diseases, infl ammation, and cancers such as 
prostate cancer and multiple myeloma. Jak inhibitors currently are being tested in models of multiple myeloma. Stat3 can act as an oncogene and is constitutively active in 
many tumors. Crosstalk between cytokine signaling and EGFR family members is seen in some cancer cells. Research has shown that in glioblastoma cells overexpressing 
EGFR, resistance to EGFR kinase inhibitors is induced by Jak2 binding to EGFR via the FERM domain of the former (Sci. Signal. (2013) 6, ra55).

Activating Jak mutations are major molecular events in human hematological malignancies. Researchers have found a unique somatic mutation in the Jak2 pseudokinase 
domain (V617F) that commonly occurs in polycythemia vera, essential thrombocythemia, and idiopathic myelofi brosis. This mutation results in the pathologic activation Jak2, 
associated with receptors for erythropoietin, thrombopoietin, and G-CSF, which control erythroid, megakaryocytic, and granulocytic proliferation and di� erentiation. Research-
ers have also shown that somatic acquired gain-of-function mutations of Jak1 are found in adult T cell acute lymphoblastic leukemia. Somatic activating mutations in Jak1, 
Jak2, and Jak3 have also been identifi ed in pediatric acute lymphoblastic leukemia (ALL). Furthermore, Jak2 mutations have been detected around pseudokinase domain 
R683 (R683G or DIREED) in Down syndrome childhood B-ALL and pediatric B-ALL.

Select Reviews:
Beekman, R. and Touw, I.P. (2010) Blood 115, 5131–5136.  •  Neurath, M.F. and Finotto, S. (2011) Cytokine Growth Factor Rev. 22, 83–89.  •  Sansone, P. and Bromberg, 
J. (2012) J. Clin. Oncol. 30, 1005–1014.  •  Vainchenker, W. and Constantinescu, S.N. (2013) Oncogene 32, 2601–2613.  •  Yu, H., Pardoll, D., and Jove, R. (2009) Nat. 
Rev. Cancer 9, 798–809.

Jak/Stat Signaling: IL-6 Receptor Family

© 2002–2014 Cell Signaling Technology, Inc.  •  We would like to thank Prof. Stefan Constantinescu, Ludwig Institute for Cancer Research, Brussels, Belgium for reviewing this diagram.
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NF-κB Signaling

Nuclear factor-κB (NF-κB)/Rel proteins include NF-κB2 p52/p100, NF-κB1 p50/p105, c-Rel, RelA/p65, and RelB. These proteins function as dimeric transcription factors that 
regulate the expression of genes infl uencing a broad range of biological processes including innate and adaptive immunity, infl ammation, stress responses, B-cell develop-
ment, and lymphoid organogenesis. In the classical (or canonical) pathway, NF-κB/Rel proteins are bound and inhibited by IκB proteins. Proinfl ammatory cytokines, LPS, 
growth factors, and antigen receptors activate an IKK complex (IKKβ, IKKα, and NEMO), which phosphorylates IκB proteins. Phosphorylation of IκB leads to its ubiquitination 
and proteasomal degradation, freeing NF-κB/Rel complexes. Active NF-κB/Rel complexes are further activated by post-translational modifi cations (phosphorylation, acetyla-
tion, glycosylation) and translocate to the nucleus where, either alone or in combination with other transcription factors including AP-1, Ets, and Stat, they induce target gene 
expression. In the alternative (or noncanonical) NF-κB pathway, NF-κB2 p100/RelB complexes are inactive in the cytoplasm. Signaling through a subset of receptors, including 
LTβR, CD40, and BR3, activates the kinase NIK, which in turn activates IKKα complexes that phosphorylate C-terminal residues in NF-κB2 p100. Phosphorylation of NF-κB2 
p100 leads to its ubiquitination and proteasomal processing to NF-κB2 p52. This creates transcriptionally competent NF-κB p52/RelB complexes that translocate to the 
nucleus and induce target gene expression. Only a subset of NF-κB agonists and target genes are shown here.

Select Reviews:
Gilmore T.D. (2014) www.nf-kb.org  •  Hayden M.S. and Ghosh S. (2008) Cell 132, 344–362.  •  Perkins N.D. (2006) Oncogene 25, 6717–30.  •  Sun S-C. (2012) Immunol 
Rev. 246, 125–140.  •  Chen J. and Chen Z.J. (2013) Curr. Opin. Immunol. 25, 4–12.

© 2009–2014 Cell Signaling Technology, Inc.  •  We would like to thank Prof. Thomas D. Gilmore, Boston University, Boston, MA, for reviewing this diagram.
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CHAPTER 07: IMMUNOLOGY AND INFLAMMATION
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Tumor cells employ multiple defense strategies to evade detection by the immune system. One common strategy, upregulation of immune checkpoint proteins and ligands, 
takes advantage of a natural immune mechanism for self-tolerance and prevention of collateral tissue damage. Immune checkpoint receptors, such as PD-1, CTLA-4, and 
many others, are located on T cells and engage with their corresponding ligand on tumor cells and dendritic cells, sending inhibitory signals that repress T cell activation or 
response. One of the fi rst discovered checkpoint proteins, CTLA-4, plays a role at the stage of T cell priming by binding to the CD28 ligands CD80 or CD86 to prevent co-
stimulatory signals necessary for T cell activation. In contrast, the PD-1/PD-L1 checkpoint acts later in the process, inhibiting anti-tumor immune responses by e� ector T cells 
such as CD4+ T helper 1 (Th1) cells and CD8+ cytotoxic T lymphocytes (CTLs), leading to decreases in IFNγ production and cytolytic activity. Upregulation of PD-L1 expression 
on the tumor cell surface is mediated by IFNγR signaling to Stat1, as well as oncogenic signaling through several receptor tyrosine kinases (EGFR, ALK, ROS, HER2, and oth-
ers) to activate the MAPK, Akt, and Stat3 pathways. 

Cells in the tumor microenvironment can also infl uence tumor progression. FoxP3+/CD4+ T regulatory cells (Tregs) and myeloid-derived suppressor cells (MDSCs) secrete im-
munosuppressive cytokines IL-10 and TGF-β to inhibit the activity of Th1 cells and CTLs. Natural killer (NK) cells release cytotoxic granules against the tumor cell and secrete 
IFNγ, which stimulates surrounding pro-infl ammatory M1 macrophages. Pro-tumorigenic M2 macrophages suppress anti-tumor immune responses via production of IL-10 
and TGF-β and promote metastasis through release of MMPs. MMPs and TGF-β are also released by surrounding mast cells.

Select Reviews:
Pardoll, D.M. (2012) Nat. Rev. Cancer 12, 252–264.  •  Vanneman, M. and Drano� , G. (2012) Nat. Rev. Cancer 12, 237–251.  •  Kawakami, Y., Yaguchi, T., and Park, J.H., 
et al. (2013) Front. Oncol. 3, 136.  •  Elinav, E., Nowarski, R., Thaiss, C.A., et al. (2013) Nat. Rev. Cancer 13, 759–771.  •  Mentlik, J.A., Cohen, A.D., and Campbell, K.S. 
(2013) Front. Immunol. 4, 481.  •  Gajewski, T.F., Schreiber, H., and Fu, Y.X. (2013) Nat. Immunol. 14, 1014–1022.  •  Krstic, J. and Santibanez, J.F. (2014) Scientifi cWorld-
Journal, 521754.

© 2014 Cell Signaling Technology, Inc.  •  We would like to thank Glenn Dranoff, M.D., Susanne H.C. Baumeister, M.D., 
Karrie Wong, Ph.D., and Girija Goyal, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, for reviewing this diagram.
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