

COVER IMAGE: Methylation of cytosine bases in regions called CpG islands is a hallmark of transcriptionally repressed heterochromatin. These methylated cytosines in turn recruit proteins like methyl-CpG binding protein 2 (MeCP2; gray) and heterochromatin protein 1 (HP1; orange). These proteins are thought to maintain a repressive state of chromatin by inducing histone deacetylation by HDACs (purple) as well as histone tail methylation by histone methyltransferase enzymes (red).

Technical Support

At CST, providing exceptional customer service and technical support are top priorities. Our scientists work at the bench daily to produce and validate our antibodies, so they have hands-on experience and in-depth knowledge of each antibody's performance. In the process, these same scientists generate valuable reference information that they use to answer your questions and help troubleshoot your experiment by phone or email.

www.cellsignal.com/support (USA & Europe)

www.cst-c.com.cn/support (China)

www.cstj.co.jp/support (Japan)

Contents

- 3 Tri-Methyl-Histone H3 (Lys27) Rabbit mAb Performance
- Tri-Methyl-Histone H3
 (Lys9) Antibody
 Performance Comparison
- Acetyl-Histone H3
 (Lys9) Antibody
 Performance Comparison

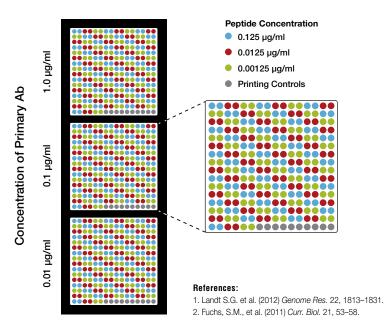
Validation for Histone Modification Antibodies

Antibodies targeted to histone modifications may bind non-specifically to similar, but off-target histone modifications. Conversely, their specific binding can be inhibited by steric hindrance from modifications on neighboring residues. Assays like ELISA, western blot, ChIP, and IF are commonly used to demonstrate antibody specificity and sensitivity, but they cannot clearly predict how an antibody will interact with nearby epitopes. As a result, they are of limited use when trying to validate an antibody to a histone modification target.

For these reasons, the ENCyclopedia Of DNA Elements (ENCODE) Project (National Human Genome Research Institute) established a set of guidelines for the validation of antibodies used for ChIP-seq experiments¹.

CST modification-specific histone antibodies are validated in accordance with the ENCODE guidelines, but we go a step further by using a peptide array assay similar to the one described by Fuchs, S.M., et al². In a single experiment, these arrays assess reactivity against known modifications across all histone proteins as well as the effects of neighboring modifications on the ability of the antibody to detect a single modification site. Therefore, the peptide array assay allows us to confirm the antibodies are performing as expected.

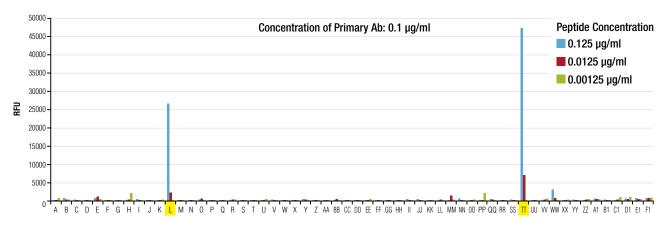
Array


Peptides with mono-,di-, tri-methyl, acetyl-, or unmodified lysine are spotted onto nitrocellulose either alone or in combination with a known neighboring histone modification (e.g., histone H3K4Me3 and H3T3Phos), as indicated in the diagram. A similar array is used for testing methylarginine antibodies.

Antibody

The histone modification antibody is applied to the array at three concentrations, as indicated in the diagram. This allows us to assess antibody reactivity while ensuring that the antibody concentration is not saturating the assay.

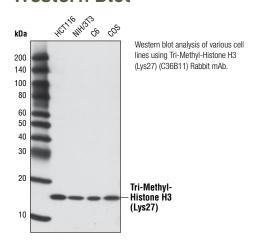
Analysis


The arrays are washed and incubated with a fluorescently tagged secondary antibody and then read using a LI-COR® Odyssey® Infrared Imager.

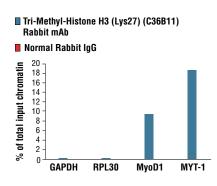
Tri-Methyl-Histone H3 (Lys27) Rabbit mAb Performance

Peptide Array

Tri-Methyl Histone H3 (Lys27) (C36B11) Rabbit mAb #9733 is highly specific for tri-methyl-histone H3 (Lys27) and is not affected by methylation at Arg26.


Peptide List

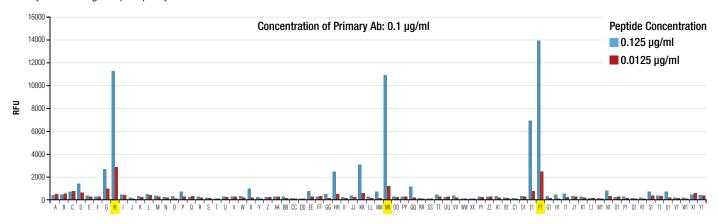
Α	H3 (Lys4) non-methyl
В	H3 (Lys4) mono-methyl
С	H3 (Lys4) di-methyl
D	H3 (Lys4) tri-methyl
Е	H3 (Lys9) non-methyl
F	H3 (Lys9) mono-methyl
G	H3 (Lys9) di-methyl
н	H3 (Lys9) tri-methyl
ı	H3 (Lys27) non-methyl
J	H3 (Lys27) mono-methyl
K	H3 (Lys27) di-methyl
L	H3 (Lys27) tri-methyl
М	H3 (Lys36) non-methyl
N	H3 (Lys36) mono-methyl
0	H3 (Lys36) di-methyl
Р	H3 (Lys36) tri-methyl
Q	H3 (Lys79) non-methyl
R	H3 (Lys79) mono-methyl
S	H3 (Lys79) di-methyl
Т	H3 (Lys79) tri-methyl


U	H4 (Lys20) non-methyl
٧	H4 (Lys20) mono-methyl
W	H4 (Lys20) di-methyl
Х	H4 (Lys20) tri-methyl
Υ	H2A (Lys5) non-methyl
Z	H2A (Lys5) mono-methyl
AA	H2A (Lys5) di-methyl
BB	H2A (Lys5) tri-methyl
CC	H3 (Thr3) phospho/(Lys4) mono-methyl
DD	H3 (Thr3) phospho/(Lys4) di-methyl
EE	H3 (Thr3) phospho/(Lys4) tri-methyl
FF	H3 (Arg2) symmetric-di-methyl/(Lys4) mono-methyl
GG	H3 (Arg2) symmetric-di-methyl/(Lys4) di-methyl
нн	H3 (Arg2) symmetric-di-methyl/(Lys4) tri-methyl
П	H3 (Arg2) asymmetric-di-methyl/(Lys4) mono-methyl
JJ	H3 (Arg2) asymmetric-di-methyl/(Lys4) di-methyl
KK	H3 (Arg2) asymmetric-di-methyl/(Lys4) tri-methyl
LL	H3 (Arg8) symmetric-di-methyl/(Lys9) mono-methyl
MM	H3 (Arg8) symmetric-di-methyl/(Lys9) di-methyl
NN	H3 (Arg8) symmetric-di-methyl/(Lys9) tri-methyl

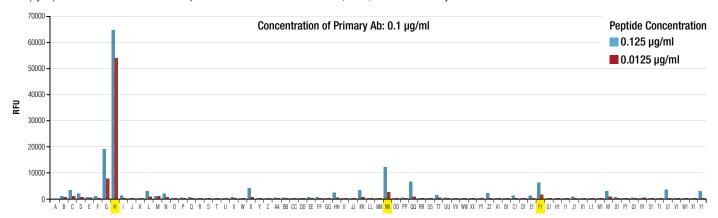
00	H3 (Lys9) mono-methyl/(Ser10) phospho
PP	H3 (Lys9) di-methyl/(Ser10) phospho
QQ	H3 (Lys9) tri-methyl/(Ser10) phospho
RR	H3 (Arg26) asymmetric-di-methyl/(Lys27) mono-methyl
SS	H3 (Arg26) asymmetric-di-methyl/(Lys27) di-methyl
TT	H3 (Arg26) asymmetric-di-methyl/(Lys27) tri-methyl
UU	H3 (Lys27) mono-methyl/(Ser28) phospho
VV	H3 (Lys27) di-methyl/(Ser28) phospho
ww	H3 (Lys27) tri-methyl/(Ser28) phospho
XX	H3 (Lys9) mono-methyl/(Ser10/Thr11) phospho
YY	H3 (Lys9) di-methyl/(Ser10/Thr11) phospho
ZZ	H3 (Lys9) tri-methyl/(Ser10/Thr11) phospho
A1	H3 (Thr6) phospho/(Lys9) tri-methyl
B1	H3 (Lys4) di-methyl/(Thr6) phospho
C1	H3 (Lys4) mono-methyl/(Thr6) phospho
D1	H3 (Lys4) tri-methyl/(Thr6) phospho
E1	H3 (Thr6) phospho/(Lys9) di-methyl
F1	H3 (Thr6) phospho/(Lys9) mono-methyl

Western Blot

ChIP



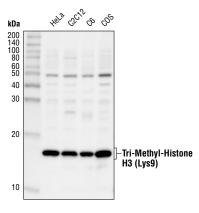
Chromatin immunoprecipitation was performed with crosslinked chromatin from 4 x 106 HeLa cells and either 10 µl of Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb, or 2 µl of Normal Rabbit lgG #2729, using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. The enriched DNA was quantified by real-time PCR using SimpleChIP® Human GAPDH Exon 1 Primers #5516, SimpleChIP® Human RPL30 Exon 3 Primers #7014, SimpleChIP® Human MyoD1 Exon 1 Primers #4490, and SimpleChIP® Human MYT-1 Exon 1

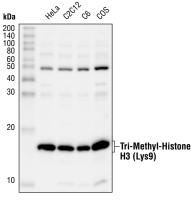

Tri-Methyl-Histone H3 (Lys9) Antibody Performance Comparison

Peptide Array

Tri-Methyl-Histone H3 (Lys9) (D4W1U) Rabbit mAb #13969 is highly specific for tri-methyl-histone H3 (Lys9) and binding is not affected by methylation at Arg8 or phosphorylation at Thr6.

Other Company's ENCODE Approved Tri-Methyl-Histone H3 (Lys9) Antibody is highly specific for tri-methyl-histone H3 (Lys9). However, binding is reduced by methylation at Arg8 and phosphorylation at Thr6, indicating this antibody will not detect tri-methyl-histone H3 (Lys9) in the context of these multiple modifications in western blot, ChIP, and other assays.

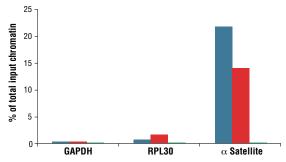

Peptide List


•							
Α	H3 (Lys4) non-methyl	Х	H4 (Lys20) tri-methyl		H3 (Arg8) symmetric-di-methyl/(Lys9)	D1	H3 (Thr6) phospho/(Lys9) mono-methyl
В	H3 (Lys4) mono-methyl	Υ	H2A (Lys5) non-methyl	MM	di-methyl	E1	H3 (Thr6) phospho/(Lys9) di-methyl
С	H3 (Lys4) di-methyl	Z	H2A (Lys5) mono-methyl	NN	H3 (Arg8) symmetric-di-methyl/(Lys9)	F1	H3 (Thr6) phospho/(Lys9) tri-methyl
D	H3 (Lys4) tri-methyl	AA	H2A (Lys5) di-methyl	ININ	tri-methyl	G1	H3 (Lys56) non-methyl
E	H3 (Lys9) non-methyl	BB	H2A (Lys5) tri-methyl	00	H3 (Lys9) mono-methyl/(Ser10) phospho	H1	H3 (Lys56) mono-methyl
F	H3 (Lys9) mono-methy	CC	H3 (Thr3) phospho/(Lys4) mono-methyl	PP	H3 (Lys9) di-methyl/(Ser10) phospho	I1	H3 (Lys56) di-methyl
G	H3 (Lys9) di-methyl	DD	H3 (Thr3) phospho/(Lys4) di-methyl	QQ	H3 (Lys9) tri-methyl/(Ser10) phospho	J1	H3 (Lys56) tri-methyl
Н	H3 (Lys9) tri-methyl	EE	H3 (Thr3) phospho/(Lys4) tri-methyl	RR	H3 (Arg26) asymmetric-di-methyl/(Lys27)	K1	H1.4 (Lys26)
- 1	H3 (Lys27) non-methyl	FF	H3 (Arg2) symmeric-di-methyl/(Lys4)	nn	mono-methyl	L1	H1.4 (Lys26) mono-methyl
J	H3 (Lys27) mono-methyl	FF	mono-methyl	SS	H3 (Arg26) asymmetric-di-methyl/(Lys27)	M1	H1.4 (Lys26) di-methyl
K	H3 (Lys27) di-methyl	GG	H3 (Arg2) symmeric-di-methyl/(Lys4)	33	di-methyl	N1	H1.4 (Lys26) tri-methyl
L	H3 (Lys27) tri-methyl	GG	di-methyl	TT	H3 (Arg26) asymmetric-di-methyl/(Lys27)	01	H1.4 (Lys26) mono-methyl/(Ser27) phospho
M	H3 (Lys36) non-methyl	нн	H3 (Arg2) symmeric-di-methyl/(Lys4)	• • •	tri-methyl	P1	H1.4 (Lys26) di-methyl/(Ser27) phospho
N	H3 (Lys36) mono-methyl		tri-methyl	UU	H3 (Lys27) mono-methyl/(Ser28) phospho	Q1	H1.4 (Lys26) tri-methyl/(Ser27) phospho
0	H3 (Lys36) di-methyl	- 11	H3 (Arg2) asymmeric-di-methyl/(Lys4)	W	H3 (Lys27) di-methyl/(Ser28) phospho	R1	H2B (Lys5/Lys12/Lys15/Lys20)
P	H3 (Lys36) tri-methyl	• • • • • • • • • • • • • • • • • • • •	mono-methyl	ww	H3 (Lys27) tri-methyl/(Ser28) phospho	S1	H2B (Lys5) mono-methyl
Q	H3 (Lys79) non-methyl	JJ	H3 (Arg2) asymmeric-di-methyl/(Lys4)	XX	H3 (Lys9) mono-methyl/(Ser10/Thr11)	T1	H2B (Lys5) di-methyl
R	H3 (Lys79) mono-methyl	- 00	di-methyl	^^	phospho	U1	H2B (Lys5) tri-methyl
S	H3 (Lys79) di-methyl	KK	H3 (Arg2) asymmeric-di-methyl/(Lys4)	YY	H3 (Lys9) di-methyl/(Ser10/Thr11) phospho	V1	H4 (Lys5/Lys8/Lys12/Lys16)
Т	H3 (Lys79) tri-methyl	IXIX	tri-methyl	ZZ	H3 (Lys9) tri-methyl/(Ser10/Thr11) phospho	W1	H4 (Lys5) mono-methyl
U	H4 (Lys20) non-methyl	LL	H3 (Arg8) symmetric-di-methyl/(Lys9)	A1	H3 (Lys4) mono-methyl/(Thr6) phospho	X1	H4 (Lys5) di-methyl
V	H4 (Lys20) mono-methyl		mono-methyl	B1	H3 (Lys4) di-methyl/(Thr6) phospho	Y1	H4 (Lys5) tri-methyl
W	H4 (Lys20) di-methyl			C1	H3 (Lys4) tri-methyl/(Thr6) phospho		

Western Blot

Tri-Methyl-Histone H3 (Lys9) (D4W1U) Rabbit mAb

Other Company's **ENCODE Approved** Tri-Methyl-Histone H3 (Lys9) Antibody

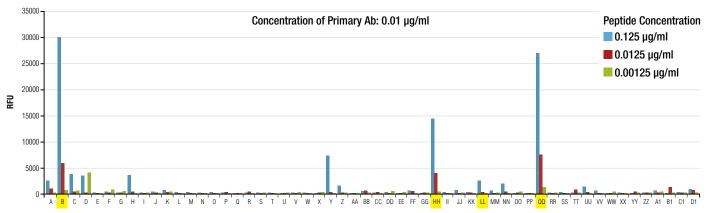


Western blot analysis of cell extracts from various cell lines using Tri-Methyl-Histone H3 (Lys9) (D4W1U) Rabbit mAb (left) and the ENCODE approved antibody from the other company (used according to manufacturer's recommendation) (right).

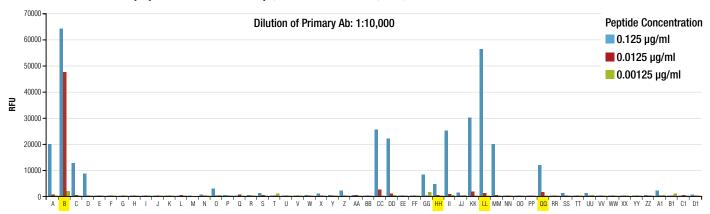
Although both antibodies are nearly indistinguishable by western blotting, the peptide array assay shows that binding of the other company's ENCODE approved antibody is blocked by known neighboring modifications with distinct biological functions. Therefore, the other company's antibody will not detect H3K9Me3 in the context of these multiple modifications in western blot, ChIP, and other assays.

ChIP

- Tri-Methyl H3 (Lys9) (D4W1U) Rabbit mAb
- **■** Other Company's ENCODE Approved Antibody
- Normal Rabbit IgG


Chromatin immunoprecipitation was performed with cross-linked chromatin from 4 x 106 HeLa cells and either 10 μl of Tri-Methyl H3 (Lys9) (D4W1U) Rabbit mAb, 4 μl of Tri-Methyl H3 (Lys9) ENCODE approved antibody from the other company (used according to manufacturer's recommendation), or 2 ul of Normal Rabbit IgG #2729 using SimpleChIP® Plus Enzymatic Chromatin IP Kit (Magnetic Beads) #9005. The enriched DNA was quantified by real-time PCR using primers to the indicated loci.

Tri-methylation at Histone H3 on Lys9 is associated with inactive regions of the genome. As expected, Tri-Methyl-Histone H3 (Lys9) (D4W1U) Rabbit mAb effectively enriches the inactive α Satellite region and does not enrich active genes like GAPDH and RPL30. The ENCODE approved antibody from the other company provided significantly less target enrichment.


Acetyl-Histone H3 (Lys9) Antibody Performance Comparison

Peptide Array

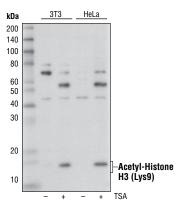
Acetyl-Histone H3 (Lys9) (C5B11) Rabbit mAb #9649 is specific for acetyl-histone H3 (Lys9). It shows minimal cross-reactivity with other acetyl-lysine residues. Its binding is reduced by phosphorylation at Ser10 but is not affected by methylation at Arg8 or phosphorylation at Thr6.

Other Company's ENCODE Approved Acetyl-Histone H3 (Lys9) Antibody binding is not reduced by phosphorylation at Ser10, but it cross-reacts with other acetyl-lysine residues and its binding is affected by methylation at Arg8 and phosphorylation at Thr6. This data suggests the antibody will cross-react with other acetyl-lysines in additional assays, such as western blot, ChIP, etc.

Peptide List

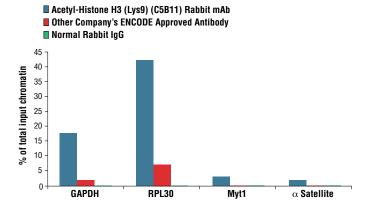

Α	H3 (Lys9/Lys14/Lys18)
В	H3 (Lys9) acetyl
C	H3 (Lys14) acetyl
D	
_	H3 (Lys18) acetyl
Е	H3 (Lys23)
F	H3 (Lys23) acetyl
G	H3 (Lys27)
Н	H3 (Lys27) acetyl
1	H3 (K36)
J	H3 (K36) acetyl
K	H3 (Lys56)
L	H3 (Lys56) acetyl
М	H4 (Lys5/Lys8/Lys12/Lys16)
N	H4 (Lys5) acetyl
0	H4 (Lys8) acetyl
Р	H4 (Lys12) acetyl
Q	H4 (Lys16) acetyl
R	H4 (Lys20)
S	H4 (Lys20) acetyl

т	H4 (Lys91)
Ü	13 /
-	H4 (Lys91) acetyl
٧	H2A
W	H2A (Lys5) acetyl
Х	H2B (Lys5/Lys12/Lys15/Lys20)
Υ	H2B (Lys5) acetyl
Z	H2B (Lys12) acetyl
AA	H2B (Lys15) acetyl
BB	H2B (Lys20) acetyl
CC	H3 (Lys4)
DD	H3 (Lys4) acetyl
EE	H3 (Lys79)
FF	H3 (Lys79) acetyl
GG	H3 (Thr3) phospho/(Lys4) acetyl
НН	H3 (Arg8) symmetric-di-methyl/(Lys9) acetyl
П	H3 (Arg2) asymmetric-di-methyl/(Lys4) acetyl
JJ	H3 (Arg17) asymmetric-di-methyl/(Lys18) acetyl
KK	H3 (Arg2) symmetric-di-methyl/(Lys4) acetyl
LL	H3 (Lys9) acetyl/(Ser10) phospho


MM	H3 (Lys9) acetyl/(Ser10/Thr11) phospho
NN	H3 (Arg26) asymmetric-di-methyl/(Lys27) acetyl
00	H3 (Lys27) acetyl/(Ser28) phospho
PP	H3 (Lys4) acetyl/(Thr6) phospho
QQ	H3 (Thr6) phospho/(Lys9) acetyl
RR	H4 (Arg3) asymmetric-di-methyl/(Lys5) acetyl
SS	H4 (Arg3) symmetric-di-methyl/(Lys5) acetyl
TT	H1.4 (Lys26)
UU	H1.4 (Lys26) acetyl
W	H1.4 (Lys26) acetyl/(Ser27) phospho
WW	H2AX (Lys5)
XX	H2AX (Lys5) acetyl
ΥY	H2AZ (Lys4/Lys7/Lys11/Lys13/Lys15)
ZZ	H2AZ (Lys4) acetyl
A1	H2AZ (Lys7) acetyl
B1	H2AZ (Lys11) acetyl
C1	H2AZ (Lys13) acetyl
D1	H2AZ (Lys15) acetyl

Western Blot

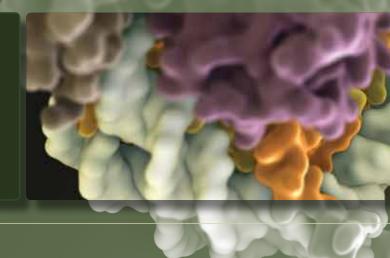
Acetyl-Histone H3 (Lys9) (C5B11) Rabbit mAb


Other Company's **ENCODE Approved** Acetyl-Histone H3 (Lys9) Antibody

Western blot analysis of extracts from 3T3 and HeLa cells, untreated (-) or treated with TSA (+), using Acetyl-Histone H3 (Lys9) (C5B11) Rabbit mAb or the ENCODE approved antibody from the other company (used according to the manufacturer's recommendations).

The Acetyl-Histone H3 (Lys9) (C5B11) Rabbit mAb detects a single band at the appropriate molecular weight. The ENCODE approved antibody from the other company is weaker than the CST antibody and also cross-reacts with numerous unidentified proteins.

ChIP



Chromatin immunoprecipitation was performed with cross-linked chromatin from 4×10^6 cells. HeLa cells and either 10 μl of Acetyl-Histone H3 (Lys9) (C5B11) Rabbit mAb, 10 μl of Acetyl-H3 (Lys9) ENCODE approved antibody from the other company (used according to manufacturer's recommendation), or 2 μl of Normal Rabbit IgG #2729 using SimpleChIP® Plus Enzymatic Chromatin IP Kit (Magnetic Beads) #9005. The enriched DNA was quantified by real-time PCR using primers to the indicated loci.

Acetylation at Histone H3 on Lys9 is associated with actively transcribed genes such as GAPDH and RPL30. As expected, Acetyl-Histone H3 (Lys9) (C5B11) Rabbit mAb effectively enriches for these regions of the genome and does not enrich for inactive genes like Myt1 and α Satellite. The ENCODE approved antibody from the other company showed significantly less enrichment of the target loci.

Cell Signaling Technology (CST) is a private, family-owned company, founded by scientists and dedicated to providing high quality research tools to the biomedical research community. Our 400 employees operate worldwide from our headquarters in Danvers, Massachusetts, and our offices in the Netherlands, China, and Japan. As scientists ourselves, we believe an antibody is only as good as the research it enables. For this reason, we are actively engaged in the development of technologies to facilitate signaling analysis and mechanistic cell biology research. And, the same scientists who produce and validate our primary antibodies are available to provide technical support for customers. In this way, we are able to supply customers with both the reagents and the information they need to achieve consistent, reliable results at the research bench.

UNITED STATES

Orders: 877-616-2355 | orders@cellsignal.com Support: 877-678-8324 | support@cellsignal.com www.cellsignal.com

CHINA

Tel: +86-21-58356288
Support (China): 4006-473287/GreatQ | tech@cst-c.com.cn
Support (Asia Pacific): csttechasia@cst-c.com.cn
www.cst-c.com.cn

EUROPE, MIDDLE EAST & AFRICA

Tel: +31 (0)71 720 0200 Support: eusupport@cellsignal.eu www.cellsignal.com

JAPAN

Tel: 03-3295-1630 | Support: info@cstj.co.jp www.cstj.co.jp

ORDER INFORMATION

Find order information online at www.cellsignal.com/orderinfo

www.cellsignal.com

CST Antibody Performance Guarantee: To learn more, please visit: www.cellsignal.com/abguarantee.

Printed on recycled paper (25% post-consumer waste fiber) using vegetable inks and processed chlorine free.

