Demonstration of Orthogonal Complementary Enrichment Methods for Enhanced Phosphopeptide Profiling of Drug-Treated Gastric Carcinoma Cells

Introduction

odification of proteins by phosphorylation has been shown to regulate many aspects of cellular function from growth and differentiation to basic metabolism. Here we show that two phosphopeptide enrichment strategies (IMAC and Motif Antibody) are highly complementary with an overlap of ~6% in the number of unique, non-redundant phosphopeptide identifications. In conjunction with using label-free quantitation methods, we show effects of two classes of kinase inhibitor on down stream substrates in the human gastric carcinoma cell line, MKN-45. Following treatment of cells with the c-Met RTK inhibitor SU11274 or the PKC family inhibitor staurosporine, phosphopeptides were isolated using a combination of 14 serine and threonine phospho specific motif antibodies, a Phospho-Tyrosine specific rabbit monoclonal antibody or an IMAC enrichment using Fe³⁺ charged agarose beads. The results show over 20,000 unique phosphopeptides were identified with these methods.

Methods

The gastric cancer cell line MKN-45 was treated with vehicle, SU11274 or staurosporine for 2 hours. Tryptic and LysC pepcharged NTA agarose beads. Purified peptides were analyzed by LC-MS/MS us MacCoss Lab Software, University of Washington, Seattle, Washington); results were analyzed using TIBCO Spotfire DecisionSi software (TIBCO Software, Inc., Palo Alto, CA).

Figure 1: Study Design. A total of 1X10⁸ MKN-45 cells per experiment were treated as described above. The cells were harvested in urea lysis buffer, reduced, alkylated and digested with LysC or trypsin using standard methods (Rush et al.) prior to immunoaffinity enrichment.

Phospho-Motif Antibodies						
Motif Antibody	Kinase Family	Motif	Antibody #	Туре		
Akt Substrate	AGC	RXX(s/t)	9614	Baso, ST Mix		
Akt Substrate	AGC	RXRXX(s/t)	10001	Baso, ST Mix		
PKA Substrate	AGC	(K/R)(K/R)X(s/t)	9624	Baso, ST Mix		
PKC Substrate	AGC	(K/R)XsX(K/R)	2261	Baso, ST Mix		
PKD Substrate	AGC	LXRXP(s/t)	4381	Baso, ST Mix		
CDK Substrate	CMGC	(K/R)sPX(K/R)	9477	Baso, ST Mix		
AMPK	CAMKL	LxRXX(s/t)	5759	Baso, ST Mix		
pY1000	Tyrosine	xYX	8954	рY		
ATM/ATR Substrate	Atypical	(s/t)QG, sQ	6966, 9607	ST Mix		
CK2 Substrate	CK1	t(D/E)X(D/E)	8738	ST Mix		
MAPK Substrate	MAPK	PXsP	2325	Proline, ST Mix		
tP Motif	Proline Based	tP, tPP	8134	Proline, ST Mix		
tPE Motif	Proline Based	tPE, tP	3004	Proline, ST Mix		
PLK Binding motif	Proline Based	StP	5243	Proline, ST Mix		
tXR Motif	Proline Based	tXR, tPR	8139	Proline, ST Mix		
14-3-3	Proline Based	(R/K)XXsXP	9442	Proline, ST Mix		

14PSTSHOWPTMS0170ENG_00

Figure 2: Motif Ab List. The following substrate motif antibodies were used to enrich for phosphopeptides. A combination of related motif antibodies were utilized to enrich for similar motif TYPES as outlined above (pY, S/T Mix, Basophilic & Proline-Directed).

Figure 3: PTMScan Method. The following method was used for immuoaffinity LC-MS/MS analysis. Followg peptide enrichment and LC-MS/ MS, label-free quantification is performed using Skyline Software (MacCoss Lab Software, University of Washington, Seattle, Washington).

Figure 4: Control Western Blots. A total of 20 µg of protein per condition was used for western blot analy-- DMSO, lane 2- SU11274, lane 3- staurosporine). The following western blots are illustrated above: (A) Phospho-tyrosine antibody; (B) Phospho-Met Y1234/1235; (C) PathScan[®] multiplex western cocktail.

Figure 5: Motif Antibody Western Blots. Protein extracts were probed with the following kinase substrate motif antibodies: (A) PKC, (B) Akt, (C) AMPK and PKD, (D) MAPK.

				Strict	
Enrichment	Sample	Treatment	Number Phosphopeptides	Reverse	False Discovery Rate
Pan-tyrosine	MKN-45	DMSO	6316	44	1.4%
Pan-tyrosine	MKN-45	DMSO	6445	38	1.2%
Pan-tyrosine	MKN-45	SU11274	3018	22	1.5%
Pan-tyrosine	MKN-45	SU11274	2976	22	1.5%
Pan-tyrosine	MKN-45	Staurosporine	5817	53	1.8%
Pan-tyrosine	MKN-45	Staurosporine	5846	31	1.1%
Basophillic	MKN-45	DMSO	2167	25	2.3%
Basophillic	MKN-45	DMSO	2233	19	1.7%
Basophillic	MKN-45	SU11274	1886	32	3.4%
Basophillic	MKN-45	SU11274	1912	19	2.0%
Basophillic	MKN-45	Staurosporine	2053	34	3.3%
Basophillic	MKN-45	Staurosporine	1988	24	2.4%
S/T Mix	MKN-45	DMSO	4024	78	3.8%
S/T Mix	MKN-45	DMSO	4057	93	4.5%
S/T Mix	MKN-45	SU11274	3685	107	5.6%
S/T Mix	MKN-45	SU11274	3710	106	5.6%
S/T Mix	MKN-45	Staurosporine	4159	90	4.2%
S/T Mix	MKN-45	Staurosporine	4154	93	4.4%
IMAC	MKN-45	DMSO	11812	275	4.6%
IMAC	MKN-45	DMSO	12574	265	4.1%
IMAC	MKN-45	SU11274	11753	232	3.9%
IMAC	MKN-45	SU11274	12031	253	4.1%
IMAC	MKN-45	Staurosporine	11688	252	4.2%
IMAC	MKN-45	Staurosporine	12124	254	4.1%
Proline Mix	MKN-45	DMSO	3436	17	1.0%
Proline Mix	MKN-46	DMSO	3500	16	0.9%
Proline Mix	MKN-47	SU11274	2657	14	1.1%
Proline Mix	MKN-48	SU11274	2579	17	1.3%
Proline Mix	MKN-49	Staurosporine	2398	16	1.3%
Proline Mix	MKN-50	Staurosporine	2332	20	1.7%

Figure 6: Qualitative MS/MS Summary. MS/MS spectra were evaluated using SEQUEST 3G and the SORCERER 2 platform from Sage-N Research (v4.0, Milpitas CA).

Figure 7: Label-Free Quantitation. Phosphopeptides were quantified based on MS1 peak height or area neasurements, and expressed as ratios of treated as compared to DMSO control. Peak integration was performed using either XCalibur or Skyline software.

Figure 8: Relative Quantitation for SU11274 and Staurosporine Treated MKN-45 Cells. Scatter plots are illustrated for the relative quantitation of SU11274 and Staurosporine-treated MKN-45 cells (versus DMSO control) from each of the motif phosphopeptide enrichment strategies (y-axis is log² (ratio) and x-axis is average peptide intensity across all conditions).

Figure 9: Relative Quantitation of Phosphorylation Sites on Met. The relative quantitation of tyrosine phosphorylation on the receptor tyrosine kinase, Met. Fold-change values are provided for SU11274 treatment versus DMSO.

697	Peak Height	Average	Fold Change
14 98	17,144,716 15,661,685	16,403,200	
R1 At 9			
	851,000 953,200	902,100	-18.8
	10,598,341 9,476,190	10,037,265	-1.6

the intersection

is a trademark of Sage-N Research, Inc.

Normaliz	ed Fold Change					
SU11274: DMSO	Staurosporine: DMSO	Protein Name	Site	-7/+ 7	Peptide	
-5.0	-4.6	EphA2		RVSIRLPSTSGSEGV	LPS*T*SGSEGVPFR	A
-13.6	-2.1	FOXO1A	%319	TFRPRTSSNASTISG	TSS*NASTISGR	А
-158.0	-7.2	FOXO4	%32	QSRPRSCt WPLPRPE	SCT*WPLPRPEIANQPSEPPEVEPDLGEK	А
-3.4	1.8	QIK	%358	DG <mark>RQRRPS</mark> TIAEQTV	RPS*TIAEQTVAK	А
-13.3	-29.4	S6	%235, %236, %240	IAKRRRLSSLRASTS	RLS*S*LRAS*TSK	A
-7.0	-24.5	S6	%236, %240	AKRRRLSSLRASTSK	RLSS*LRAS*TSK	А
2.6	1.1	BRAF	%365	GQ <mark>RDR</mark> SS <mark>S</mark> APNVHIN	SSS*APNVHINTIEPVNIDDLIR	А
-7.0	-9.4	GSK3B	9%	SG <mark>RPRTTS</mark> FAESCKP	TTS*FAESCKPVQQPSAFGSMK	А
-5.3	N.D.	GSK3B	%9, %21	SG <mark>RPRTTS</mark> FAESCKP	TTS*FAESCKPVQQPS*AFGSMK	А
-21.3	-3.0	PEA-15	%116	KDII <mark>R</mark> QP <mark>s</mark> EEEIIKL	DIIRQPS*EEEIIK	А
-2.1	-2.9	GSK3A	%21	SG <mark>RARTSS</mark> FAEPGGG	TSS*FAEPGGGGGGGGGGGGGSASGPGGTGGGK	А
-10.3	-1.8	RANBP3	126%	VK RER TSSLTQFPPS	TSS*LTQFPPSQSEER	А
2.7	2.5	elF4B	%422	RE <mark>RSR</mark> TG <mark>s</mark> ESSQTGT	TGS*ESSQTGTSTTSSR	А
4.8	2.5	elF4B	%422, %425	RE <mark>RSR</mark> TG <mark>s</mark> ESSQTGT	TGS*ESS*QTGTSTTSSR	А
-4.5	-20.0	rictor	%1135	NRRIRTLtEPSVDFN	TLT*EPSVDFNHSDDFTPISTVQK	А
-2.0	-2.4	rictor	%1135, %1138	NRRI R TL t EPSVDFN	TLT*EPS*VDFNHSDDFTPISTVQK	A
-8.5	-2.1	PFKFB2	%483, %493	IRRPRNYsVGSRPLK	NYS*VGSRPLKPLS*PLR	А
-1.4	N.D.	NDRG2	%330, %332, %338	TRLS <mark>R</mark> SRtASLTSAA	SRT*AS*LTSAAS*VDGNR	А
-1.7	-2.7	NDRG2	%332	LSRSRTASLTSAASV	TAS*LTSAASVDGNR	А
-1.4	3.9	Huntingtin	%419	GGRSRSGs IVELIAG	SGS*IVELIAGGGSSCSPVLSR	А
-2.5	N.D.	NDRG2	%346, %348	VDGNRSRSRTLSQSS	S*RT*LSQSSESGTLSSGPPGHTMEVSC	А
-1.1	-11.9	NDRG2	%348	GNRSRSRtLSQSSES	T*LSQSSESGTLSSGPPGHTMEVSC	А
1.4	-4.1	NDRG2	%348, %353	GNRSRSRtLSQSSES	T*LSQSS*ESGTLSSGPPGHTM#EVSC	А
-1.1	-7.3	NDRG2	%348, %357	GNRSRSRtLSQSSES	T*LSQSSESGT*LSSGPPGHTMEVSC	А
-10.5	-9.7	AS160	642%	QFRRRAHtFSHPPSS	AHT*FSHPPSSTK	А
-1.2	-27.5	GBF1	%1337	GKIHRSAt DADVVNS	SAT*DADVVNSGWLVVGK	А
-2.3	-4.1	TBC1D1	%596	AF <mark>RRR</mark> ANtLSHFPIE	ANT*LSHFPIECQEPPQPAR	А
1.5	3.5	mTOR	%2446, %2450	NK <mark>RSR</mark> TRtDSYSAGQ	T*DSYS*AGQSVEILDGVELGEPAHK	А
-1.3	2.6	PFKFB3	%461, %467	NPLMRRNsVTPLASP	RNS*VTPLAS*PEPTK	А
-6.5	-1.9	PFKFB2	%466	PVRMRRNS FTPLSSS	RNS*FTPLSSSNTIR	А

basophilic Akt substrate motif, RXRXX(s/t) or RXX(s/t) is illustrated from a subset of protein-peptide identifications generated from the Basophilic Motif Antibody enrichment.

Proline

Cell Signaling

TECHNOLOGY