

## 2013/2014 Pathway Reference Guide



# Monoclonal Antibodies one antibody, multiple applications™

### XP<sup>®</sup> monoclonal antibodies are a line of high quality rabbit monoclonal antibodies exclusively available from Cell Signaling Technology (CST).

Any product labeled with XP has been carefully selected based on superior performance in the most relevant research applications.

XP monoclonal antibodies are generated using XMT<sup>®</sup> technology, a proprietary monoclonal technology developed at CST. This technology provides access to a broad range of antibodies unattainable with traditional monoclonal technologies, allowing more comprehensive screening and the identification of XP monoclonal antibodies.

#### eXceptional specificity

As with all CST<sup>™</sup> antibodies, the antibody is specific to your target of interest, saving you valuable time and resources.

#### + eXceptional sensitivity

The antibody will provide a stronger signal for your target protein in cells and tissues, allowing you to monitor expression of low levels of endogenous proteins, saving you valuable materials.

#### + eXceptional stability and reproducibility

XMT technology combined with our stringent quality control ensures maximum lot-to-lot consistency and the most reproducible results.

#### = eXceptional Performance™

XMT technology coupled with our extensive antibody validation and stringent quality control delivers XP monoclonal antibodies with eXceptional Performance in the widest range of research applications.



EGF Receptor (D38B1) XP® Rabbit mAb #4267: IHC analysis of paraffin-embedded human placenta using #4267.



Phospho-p38 MAPK (Thr180/Tyr182) (D3F9) XP® Rabbit mAb #4511: Western blot analysis of extracts from COS and 293 cells, untreated or UV-treated, using #4511 (upper) or p38 MAPK Antibody #9212 (lower).



Phospho-Histone H3 (Ser10) (D2C8) XP® Rabbit mAb #3377: Flow cytometric analysis of Jurkat cells using #3377 versus propidium iodide (DNA content). The boxed population indicates Phospho-Histone H3 (Ser10) positive cells.



Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb #4060: Confocal IF analysis of C2C12 cells treated with LY294002 #9901 (left) or insulin (right), using #4060 (green). Actin filaments were labeled with DY-554 phalloidin (red). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye).

Visit our website for more experimental details, additional information, and a complete list of available XP Monoclonal Antibodies.

## Our Commitment to You...

As a company driven by science, our goal is to accelerate biomedical research by developing a "research tool box" enabling researchers to monitor and measure protein activity. We strive to meet contemporary and future research challenges by creating the highest quality, most specific and thoroughly validated antibodies and related reagents. As a committed member of the research community, we practice responsible and sustainable business methods and invest heavily in research and development. Moreover, we encourage thoughtful use of our limited resources by highlighting environmental issues in our catalog and promoting conservation and recycling.

Highest Quality Products: As scientists we understand your needs-our entire focus is your experimental success. The combination of experienced PhD level scientists overseeing target selection and antibody development. processes together with novel antibody production technologies results in the highest possible product quality.

Extensive Product Validation: All product development and production is followed by rigorous in-house testing. on a wide range of assay applications. This ensures optimal and reliable performance in critical applications employed in biomedical research.

Highest Quality Support: Technical support is provided by the same scientists who produce the products and know them best.

Research: Research at Cell Signaling Technology (CST) has led to the development of PTMScan™ methodology, a novel affinity/mass spectrometry method for the identification of post-translational modification sites (Nature Biotech. 23, 94–101). The combination of PTMScan™ technology with motif artibody development at CST has enabled us to expand discovery efforts from tyrosine to serine/threonine phosphorylation and other modifications such as acetylation and methylation.

PhosphoSitePlus\* Bioinformatics Resource: Together with the NIH, we continue to expand PhosphoSitePlus\*, available at www.phosphosite.org. PhosphoSitePlus® is the world's most comprehensive resource for the study of in vivo phosphorylation events. PhosphoSilePlus® contains thousands of previously unpublished phosphorylation sites discovered at CST, now made freely available to all customers. We encourage you to review this new information and request reagent development.

New Antibody Technology: Over the years, we have invested in the development of new antibody production technologies. XMT™ technology, a new exceptional monocional method from CST, allows the production of XP® monocional antibodies with exceptional performance.

Please visit our website for frequent new product additions. With over 1,300 new products developed at CST during the past two years, the best way to keep up with our rapid rate of new product introduction is to check our website. The website also contains an online version of our unique signal transduction reference material, as well as a special section on our commitment to the environment.



Cover: Fluorescent photo taken to reveal the natural blue light. fluorescence of the grooved brain coral (Diploria labyrinthilormis) at night with polyps extended to feed, Caribbean Sea. Coral reets are biologically diverse and productive ecosystems, occupying just 0.1 percent of the oceans by volume while providing a home for about one third of all marine species. For more information about the Mescamerican reef: www.eco.cellsignal.com

### Table of Contents

4 PhosphoSitePlus®

#### Signaling Pathway Diagrams and Tables

- 8 Histone Acetylation
- 9 Histone Lysine Methylation
- 9 Examples of Crosstalk Between Post-translational Modifications
- 10 Histone Modification Table
- 12 Signaling Pathways Activating p38 MAP Kinase
- 12 MAPK/Erk in Growth and Differentiation
- 13 G Protein-coupled Receptors Siganaling to MAPK/Erk
- 13 SAPK/JNK Signaling Cascades
- 14 Regulation of Apoptosis Overview
- 14 Inhibition of Apoptosis
- 15 Death Receptor Signaling
- 15 Mitochondrial Control of Apoptosis
- 16 Autophagy Signaling
- 16 PI3 Kinase/Akt Signaling
- 17 Akt Substrates Table
- 22 Akt Binding Partners Table
- 23 Insulin Receptor Signaling
- 23 Warburg Effect
- 24 AMPK Signaling
- 24 AMPK Substrate Table
- 27 mTOR Signaling
- 27 Translational Control: eIF4E and p70 S6K
- 28 Translational Control: Overview
- 28 Translational Control: Regulation of eIF2
- 29 Cell Cycle Control: G1/2 Checkpoint
- 29 Cell Cycle Control: G2/M DNA Damage Checkpoint
- 30 Jak/Stat Signaling: IL-6 Receptor Family
- 30 Jak/Stat Utilization Table
- 31 Jak and Cytokine Receptor Table
- 32 NF-kB Signaling
- 32 Toll-like Receptor Signaling
- 33 T Cell Receptor Signaling
- 33 B Cell Receptor Signaling
- 34 Amyloid Plaque and Neurofibrillary Tangle Formation in Alzheimer's Disease
- 34 Dopamine Signaling in Parkinson's Disease
- 35 Hippo Signaling
- 35 ESC Pluripotency and Differentiation
- 36 Wnt/8-Catenin Signaling
- 36 Notch Signaling
- 37 Hedgehog Signaling
- 37 TGF-β Signaling
- 38 Regulation of Actin Dynamics
- 38 Regulation of Microtubule Dynamics
- 39 Adherens Junction Dynamics
- 39 Angiogenesis
- 40 Nuclear Receptor Signaling
- 40 ErbB/HER Signaling
- 41 Ubiguitin/Proteasome
- 41 Ubiquitin/Proteasome Table
- 45 Deubiquitinase Table

# PhosphoSitePlus®

PhosphoSitePlus® (PSP) is an open on-line systems biology resource devoted to commonly studied protein post-translational modifications (PTMs), including phosphorylation, acetylation, ubiquitination, and methylation. PSP contains only experimentally determined sites, not predicted sites, and presents criteria that assist users in evaluating the reliability of site assignments.





Cell Signaling Technology online reference pathway diagrams are now linked to PhosphoSitePlus<sup>®</sup>.

Click on the proteins in each pathway to navigate to protein pages on the PSP website. Visit these pathways at http://www.cellsignal.com/reference/pathway/index.html.



### Comprehensive online protein modification resource provided by Cell Signaling Technology with grant support from the NIH

PSP is a new version of PhosphoSite® that continues to provide broad coverage of current literature and to publish many first reports of protein modifications including phosphorylation, methylation, and acetylation. Previously unpublished modification sites contained in PSP were discovered by Cell Signaling Technology scientists and scientists at other research institutions. PSP integrates encyclopedic information on experimentally determined protein modification sites, upstream and downstream regulation of these modifications, and powerful analytical tools for investigating the structural and biological significance of protein modifications. Many cutting-edge features make it the premiere resource in protein modification research available today: expansive and continuously curated content; molecular rendering to visualize the location of modification sites; on-the-fly generation of kinase substrate sequence logos; browsing of high-throughput content by disease, cell line, and tissue; new search interfaces that retrieve modification sites and proteins by subcellular locations, sequence and motifs, domains, responsiveness to treatments, disease, tissue, and cell type.

## www.phosphosite.org

Home Page Starting point for querying PhosphoSitePlus® Users can choose from two types of Simple Searches, three Advanced Searches, and three Browsing Interfaces.

#### Simple Search:

In addition to the protein search, which will lead to a Protein Page, the substrate search will return a list of experimentally verified in vivo and in vitro sites on specific proteins. The preferred substrate sequences can be summarized and viewed as a Sequence Logo.

#### Advanced Search:

Three types of advanced searches give the user the power to explore what is known about proteins and sites that are post-translationally modified. The Protein, Sequence, or Reference Search retrieves a list of proteins based on eleven different categories of information. The Site Search retrieves a list of modified sites (with surrounding aminoacid sequence) and proteins that can be restricted to eight different categories of information. Users can search for all proteins with modification sites that contain a degenerate motif. Comparative Site Searches adds Boolean logic to site searches, giving the user the ability to focus on sites observed under very specific conditions.

#### Search for Modified Proteins by: ---

- # Name or Accession Number
- # Protein Type or Domain
- Subcellular Localization
- # Molecular Weight Range
- Sequence/Matif

#### Search for Sequences by: •

- E Sequence/Motif
- List of Peptides
- E Protein Domain

### Search for Sites by: --

- Defined Sequences or Motifs
- Observed in Disease State
- Regulation by Treatments Protein Type, Domain,
- Subcellular Location
- Tissue, Cell Line, Cell Type

#### Browsing Interfaces: •

- Specific Diseases
- # Specific Cell Lines
- Specific Tissues



#### Substrate Search

|                                  |             |        | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|----------------------------------|-------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                  |             |        | the second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Contraction of the second second |             |        | the party law of the party line of the party lin |                   |
| On D & and p (Research)          | 20.000.000  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$1 Pins, 12 West |
| arrise (fumer.)                  | 10.000.00   | 1.00   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | der Wess          |
| artist (ref)                     | 10,000.00   |        | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Di Pers, la Ultri |
| antine (rel)                     | 10.000      | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | au mara           |
| data ( present)                  | unumits.    | -      | water a lot out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to the            |
| and further                      | 00.07104    | -      | 10.000.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | St Prog. St. West |
| ant (heren)                      | 10,000,04   |        | 100100-0.0104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | At these          |
| and Derest                       | divised too | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in the            |
| any present                      | 10,000 00   | parts. | and optimized in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | do Play, in other |



#### Protein Search

|                 |           | 11101 |           |               | _     |       |
|-----------------|-----------|-------|-----------|---------------|-------|-------|
| Contest         |           |       |           | -             | I CTC | -     |
|                 |           |       |           |               | à (   | 1     |
|                 |           |       |           | -             | - 2   | A     |
| Con Section     |           |       | 100.00.20 | AND TRANSPORT |       |       |
| Annual Annual - | n. mar 10 |       |           |               | _     |       |
| Andered States  |           |       |           |               |       |       |
| Concertainty    |           |       |           |               |       | 1.7.0 |
|                 | -         |       |           | _             | -     |       |
|                 |           |       |           | -             | 11    |       |
|                 |           |       |           | -             | 1     |       |
|                 |           |       |           | 4             | 1     |       |



# Protein Page Provides detailed information on the parent protein and its modified sites.

interactions



#### Sites, Sequences, Species, and References Section:

- # Modification sites and surrounding sequences (+/- 7 AA) presented
- # Sites mapped to other species and isoforms
- # Red residues are known modifications
- Red residue numbers are hyper-linked to associated references
- CST logo links to Cell Signaling Technology (CST) product pages



Structure Viewer: Highlight modified residues

## Our Commitment to the Environment

Observing and understanding the array of interactions that shape the living planet on a global level is just as fascinating to us as the complex molecular interactions involved in cellular signaling. The fundamental interrelationship between ourselves and the biosphere inspires us to draw attention to the magnificence of nature and some of the organizations that struggle to protect it. This year we dedicate pages in our catalog, our annual nature calendar, and CST's nature conservancy website to raising awareness about the Mesoamerican Reef. In addition, CST offers support to four organizations committed to protecting and conserving our marine resources.

For more information about the Mescemerican rest. www.eco.cellsignal.com

EcoLogic Development Fund empowers rural and indigenous peoples to restore and protect tropical ecceystems in Central America and Mexico. We collaborate with local communities to put in place strategies and solutions to increase their self-sufficiency, environmental health, and adaptability in response to climate change in ways that also encourage the long-term survival of the biodiversity around them.

Southern Environmental Association (SEA) is a Belizean non-governmental organization working towards improving stewardship and the environmental integrity of key marine areas in southern Belize through effective, collaborative protected areas management, community imolwement, and strategic partnerships for the benefit of all stakeholders. SEA co-manages three important marine protected areas in Southern Belize: Gladden Spit and Silk Cayes Marine Reserve, the Sapodilla Cayes Marine Reserve and the Laughing Bird Caye National Park. Both Laughing Bird Caye National Park and Sapodilla Cayes Marine Reserve form a part of the Belize Barrier Reef Reserve System declared by UNESCO in 1996 as a world heritage site, seabelize org

Tolede Institute for Development and Environment (TIDE) is a Belizean non-governmental organization that fosters community participation in resource management and sustainable use of ecosystems within the Maya Mountain Marine Corridor of southern Belize for the benefit of present and future generations. www.tidebelize.org

Large Pelagic Research Center (LPRC) is modeled after the Pelagic Fisheries Research Group (PFRP) in the Pacific, LPRC began as a Center to stimulate and conduct research on key species of interest to commercial and recreational fisheries and marine ecosystems in the Atlantic Ocean. The Center, established in 2003 at the University of New Hampshire, functioned as an academic research group and as a coordinator and source of extramutal funding for other large pelagic species research. In 2010, LPRC joined the Department of Environmental Conservation at the University of Massachusetts Amherst and the Graduate School of Marine Science. We are located in Gloucester, MA and, as part of the Massachusetts Marine Fisheries Institute, are working to revitalize the UMass Marine Station at Gloucester's Hodgkins Cove, www.tunalab.org

# Signaling Pathways

These diagrams have been assembled by Cell Signaling Technology (CST) scientists and outside experts to provide succinct and current overviews of selected signal transduction pathways. Knowledge about each signaling pathway has been synthesized and integrated into understandable paradigms of cellular communication.



Please click the literature icon at www.cellsignal.com to obtain copies of our latest posters.





### **Histone Acetylation**

Lysine prohiation is a reversible post-translational modification that plays a crucial role in regulating protain function, chromatin structure, and gene expression. Many transcriptional coactivators passess intrinsic aostivase activity. while transcriptional compressors are associated with deacetylase activity Acetylation complexes (such as CBP/p300 and PCAF) or descetylation complexes (such as Sin3, NaRD, NcoR, and SMRT) are recruited to DNA-bound transcription factors (TFa) in response to signaling pathways. Histone hyperarchylation by histone acetyltransferages (HATs) is associated with transcriptional activation, whereas histone deacetylation by histone deacetylases (HDACs) is associated with transcriptional repression. Histone acetylation stimulates transcription by remoteling higher order chromatili structure, weakening histore-DNA interactions. and providing binding altes for transcriptional activation complexes containing proteins that possess bromodomains, which bind acetylated lysine. Historie deacetylation represees transcription through an inverse mechanism involving the assembly of compact higher order chromatin and the exclusion of bramedomaincontaining transcription activation complexes. Histone hyposcolphation is a halmark of silent heterachromatin. Site-specific asstylation of a growing number of non-histone proteins has been shown to regulate their activity, localization, specific interactions, and stability/degradation. Remarkably, recent advances in mass spectrometry technologies allowed high resolution mapping of most of the acetylation sites in all the proteoms. These studies demonstrated that the "antifilome" encompasses nearly -3600 antifilation sites in roughly -1750 proteins, suggesting that this modification is one of the most abundant chemical modifications in nature, indeed, it appears that this mark can influence the activity of proteins in diverse biological processes, including chromatin remodaling, cell cycle, splicing, suclear transport, mitochondrial biology, and actin nucleation. At an organismal level, acetylation plays an important role in immunity, circadian rhythmicity, and memory formation. Protein acetylation is becoming a favorable target in drug design for numerous disease conditions.

Select Reviews: Albaugh, B.N., Amold, K.M., and Denu, J.M. (2011) Chem. Ele. Chem. 12, 290–298. J. Cheudhary, C., Kamar, C., Grad, E., Molsan, M.L., Rehman, M., Wather, T.C., Olien, J.Y., and Mann, M. (2009) Science 325, 834–840. J. Dal-Youori, M., Lugouge, M., Froelich, S., Koetti, C., Schoonjans, K., and Anwaro, J. (2007) Ann. Med. 39, 335–346. J. Frield, T., Dang, C.H., and Mostoslawsky, R. (2009) Nature 460, 567–591. J. Haterland, M., Mantgomery, R.L., and Olson, E.M. (2009) Nat. Rev. Genet. 10, 32–42. J. Peng, L. and Seto, E. (2011) Annobuok Eta, Pharmae: 206, 39–56. J. Spanga, S., Wagner, T., Heinzel, T., and Kamer, O. (2007) Ann. J. Bischen, Call Stot, 41, 185–198. J. Yang, X.J. and Seto, E. (2007) Occupere 26, 5310–5318. J. Yang, X.J. and Seto, E. (2008) Abb. Call 51, 449–461.

We would like to thank Prof. Real Mastoslavsky, Harvard Medical School, Boston, MA, for contributing to this diagram.

Direct Stimulatory Modification
 Direct Inhibitory Modification

→ → Wutistep Inhibitory Noolification

- - - Tertative Inhibitory Modification

Transcriptional Stimulation

Joining of Subunits ----+ Translocation





### Histone Lysine Methylation

The nucleosome, made up of four histone proteins (H2A, H2B, H3, and H4), is the primary building block of drivorialli. Originally throught to function as a static scattrid for DNA packaging, histones have more recently been shown to be dynamic proteins, undergoing multiple types of post-transitional modifications. One such modification, methylation of lysine residues, is a major determinant for formation of active and inactive regions of the genome. A set of histone lysine methyltransferases have been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Sulvar(3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation has been implicated in both transcriptional activation (H3 Lys4, 36, 79) and stending (H3 Lys9, 27, H4 Lys20).

Unlike acetylation, methylation does not alter the charge of lysine residues and is unlikely to directly modulate nucleosomal interactions required for chromatin tolding. Lysine methylation coordinates the reputitment of chromatin modifying express. Chromodomains (HPT, PRGT), PHD Ingers (BPTF, ING2), Tudor domains (SIBPT), and WD-4D domains (WDRE) are among a growing list of methyl-lysine binding modules found in histore acetyltransfersses, descetylases, methylases, and JRT-dependent chromatin remodeling express. Lysine methylation provides a binding surface for these eraymes, which then regulate chromatin condensation and nucleosome mobility in order to maintain local regions of active or inactive chromatin. In addition, lysine methylation can block binding of proteins that literact with unmethylated histories or directly inhibit catalysis of other regulatory modifications on neighboring residues. The presence of methyl-lysine binding modules in the DNA repair protein S3BPT suggests roles for lysine methylation in other cellular processes.

Histone methylation is crucial for proper programming of the genome during development, and misregulation of the methylation machinery can lead to diseased states such as cancer. Until recently, methylation was believed to be an inveversible, stable epigenetic mark that is propagated through multiple cell divisions, maintaining a gene in an active or inactive state. While there is no argument that methylation is a stable mark, recent identification of histone demethylaxes such as LSO1/AOF2, JMJD1, JMJD2, and JHOM1 has shown that methylation is reversible and provides and anotable how genomes might be reprogrammed during differentiation of incluidual cell lineages.

For selected reviews see www.cellsignal.com

### Examples of Crosstalk Between Post-translational Modifications

Post-translational medifications (PTMs) have recently emerged as major regulators of protein function. Originally described in histories, these various chemical modifications (methylation, acetylation, phosphorylation, sumoplation, and more) have now been identified in nonhistone proteins as well. Early work defined a putative role for each of these motifications; for instance, applylation consistes with activation and mothylation with repression. However, more recent studies indicate that some of these modifications could trigger either activation or silencing in a context-dependent menner. For instance, mathylation of histone H3 Lys9 correlates with repression, while methylation of H3 Lys4 correlates with activation. Furthermore, each of these moistles can be either mono-, di-, or tri-methylated, and depending on the degree of methylation, the biological putput will be completely different. We now know that these PTMs are strictly established and maintained by a set of "writers" (histone methyltransferases, acatyltransferases, etc.) and "essees" (histone demothylases, deaceptylases, etc.) that define the different medifications found in our calls. Until recently, PTMs were considered independently, under the assumption that their functions would not be related to one another. It is now clear that PTMs work in concert, and the crossitalk between different modifications determines the final biological read out. In this centerd, some medifications can influence others, and it appears that specific combinations of these modifications can form a dynamic code. We provide a few examples of this type of creastalk here. As shown, PTMs can be recognized by "readers" in cis, with a single protein using two different domains to recognize two specific modifications, as well as in trans, where modifications in one histone molecule could be recognized by a particular "reader" to modify another histone, in turn recruiting further reacters in a step-wise manner. Further, in some cases, these modifications are themselves recognized by writers and erasers that could then modify neighbor moleties, in this way adjusting the code. Although there are new many examples of these functional networks, it is likely that we have just begun to scratch the surface. Better antibodies and noval technologies will help to complete this crosstalk. puzzle, for which the specific fine-tuning appears critical to determine life as we know it.

Select Reviews: Barger, S.L. (2007) Nature 447, 407–412. | Barther, K., Alis, D.A., and Strahl, B.D. (2011) J. Mol. Biol. 409, 36–46. | Lee, J.S., Smith, E., and Shilatilard, A. (2010) Cell 142, 682–685. | Musselman, K.A. and Kutataladra, T.G. (2011) Nacl. Acids. Res. 39, 9061–9071. | Yang, X.J. and Seto, E. (2008) Mol. Cell 31, 449–461.

We would the to thank Prot. Real Mostoslausky, Harvard Medical School, Boston, MA, for contributing to this diagram.

) Kinase 💿 Terrectip ) Phosphalase 💿 Recepto



Resting Neurons

Transcriptional Repression



Membrane Depolarization

HER2A

Transcriptional Activation

Methyl-arginine Nethyl-lysine

ing Protein

Nucleosome Core Histore Tal Wathylation / Densethylation

### **Histone Modification Table**

The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), and linker histone H1 are the primary building blocks of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have more recently been shown to be dynamic proteins, undergoing multiple types of post-translational modifications that regulate chromatin condensation and DNA accessibility. For example, acetylation of lysine residues has long been associated with histone deposition and transcriptional activation, and more recently found to be associated with DNA repair. Phosphorylation of serine and threonine residues facilitates chromatin Acetylation

| Histone | Site                  | Histone-modifying Enzymes | Proposed Function                       | Ref. #  |
|---------|-----------------------|---------------------------|-----------------------------------------|---------|
|         | Lys4 (S. cerevisiae)  | Esa1                      | transcriptional activation              | (1)     |
| пса     | Lys5 (mammals)        | Tip60_p300/CBP            | transcriptional activation              | (2,3)   |
|         | Lys7 (S. cerevisiae)  | Hat1                      | unknown                                 | (4)     |
|         | , , ,                 | Esa1                      | transcriptional activation              | (1)     |
| H2B     | Lys5                  | p300, ATF2                | transcriptional activation              | (3,5)   |
| 1120    | Lys11 (S. cerevisiae) | Gcn5                      | transcriptional activation              | (6)     |
|         | Lys12 (mammals)       | p300/CBP, ATF2            | transcriptional activation              | (3,5)   |
|         | Lys15 (mammals)       | p300/CBP, ATF2            | transcriptional activation              | (3,5)   |
|         | Lys16 (S. cerevisiae) | Gcn5, Esa1                | transcriptional activation              | (6)     |
|         | Lys20                 | p300                      | transcriptional activation              | (3)     |
| ЦЭ      | Lvs4 (S. cerevisiae)  | Esa1                      | transcriptional activation              | (1)     |
| пэ      | Lyon (or continue)    | Hpa2                      | unknown                                 | (7)     |
|         | Lvs9                  | unknown                   | histone deposition                      | (8)     |
|         | -,                    | Gcn5, SRC-1               | transcriptional activation              | (9.10)  |
|         | Lvs14                 | unknown                   | histone deposition                      | (8)     |
|         | <i>.</i>              | Gcn5, PCAF                | transcriptional activation              | (3.11)  |
|         |                       | Esal, Tip60               | transcriptional activation              | (1.2)   |
|         |                       | - · · / F · · ·           | DNA repair                              | (11.12) |
|         |                       | SBC-1                     | transcriptional activation              | (10)    |
|         |                       | Flp3                      | transcriptional activation (elongation) | (13)    |
|         |                       | Hna2                      | unknown                                 | (7)     |
|         |                       | hTFIIIC90                 | BNA polymerase III transcription        | (14)    |
|         |                       | TAF1                      | RNA polymerase II transcription         | (15)    |
|         |                       | Sas2                      | euchromatin                             | (16)    |
|         |                       | Sas3                      | transcriptional activation (elongation) | (17)    |
|         |                       | n300                      | transcriptional activation              | (17)    |
|         | Lvs18                 | Gen5                      | transcriptional activation DNA repair   | (9)     |
|         | Lyono                 | n300/CBP                  | DNA replication transcriptional         | (0)     |
|         |                       | pooorobi                  | activation                              | (3,18)  |
|         | Lvs23                 | unknown                   | histone deposition                      | (8)     |
|         | -,                    | Gcn5                      | transcriptional activation. DNA repair  | (9)     |
|         |                       | Sas3                      | transcriptional activation (elongation) | (17)    |
|         |                       | p300/CBP                  | transcriptional activation              | (3.18)  |
|         | Lvs27                 | Gcn5                      | transcriptional activation              | (6)     |
|         | Lvs36                 | Gcn5                      | transcriptional activation              | (82)    |
|         | Lys56 (S. cerevisiae) | Spt10                     | transcriptional activation              | (19)    |
|         |                       |                           | DNA repair                              | (20)    |
| H4      | Lys5                  | Hat1                      | histone deposition                      | (21)    |
|         |                       | Esal, Tip60               | transcriptional activation              | (1,2)   |
|         |                       |                           | DNA repair                              | (11,12) |
|         |                       | ATF2                      | transcriptional activation              | (5)     |
|         |                       | Hpa2                      | unknown                                 | (7)     |
|         |                       | p300                      | transcriptional activation              | (3)     |
|         | Lys8                  | Gcn5, PCAF                | transcriptional activation              | (3,22)  |
|         |                       | Esal, Tip60               | transcriptional activation              | (1,2)   |
|         |                       |                           | DNA repair                              | (11,12) |
|         |                       | ATF2                      | transcriptional activation              | (5)     |
|         |                       | Elp3                      | transcriptional activation (elongation) | (13)    |
|         |                       | p300                      | transcriptional activation              | (3)     |
|         | Lys12                 | Hat1                      | histone deposition                      | (21)    |
|         |                       |                           | telomeric silencing                     | (23)    |
|         |                       | Esal, Tip60               | transcriptional activation              | (1,2)   |
|         |                       |                           | DNA repair                              | (11,12) |
|         |                       | Hpa2                      | unknown                                 | (7)     |
|         |                       | p300                      | transcriptional activation              | (3)     |
|         | Lys16                 | Gcn5                      | transcriptional activation              | (22)    |
|         |                       | MOF (D. melanogaster)     | transcriptional activation              | (24)    |
|         |                       |                           | transcriptional activation              | (1 2)   |
|         |                       | Esal, Tip60               |                                         | (1,2)   |
|         |                       |                           | UNA repair                              | (11,12) |
|         |                       | ATF2                      | transcriptional activation              | (5)     |
|         |                       | Sas2                      | euchromatin                             | (2,6)   |
|         | Lys91 (S. cerevisiae) | Hat1/Hat2                 | chromatin assembly                      | (25)    |

condensation during mitosis and transcriptional activation of immediate-early genes. Methylation of lysine and arginine residues function as a major determinant for formation of transcriptionally active and inactive regions of chromatin and is crucial for proper programming of the genome during development. This table provides a referenced list of many known histone modifications, the associated modifying enzymes, and proposed functions.

#### Methylation

| Histone | Site  | Histone-modifying Enzyme                      | Proposed Function                                         | Ref. #  |
|---------|-------|-----------------------------------------------|-----------------------------------------------------------|---------|
| H1      | Lys26 | Ezh2                                          | transcriptional silencing                                 | (48,49) |
| H2A     | Arg3  | PRMT 1/6, PRMT 5/7                            | transcriptional activation,<br>transcriptional repression | (83)    |
| H3      | Arg2  | PMRT6                                         | transcriptional repression                                | (83)    |
|         | Arg8  | PRMT5                                         | transcriptional repression                                | (31)    |
|         | Arg17 | CARM1                                         | transcriptional activation                                | (18)    |
|         | Arg26 | CARM1                                         | transcriptional activation                                | (83)    |
|         | Lys4  | Set1 (S. cerevisiae)                          | permissive euchromatin (di-Me)                            | (26)    |
|         |       | Set7/9 (vertebrates)                          | transcriptional activation (tri-Me)                       | (27)    |
|         |       | MLL, ALL-1                                    | transcriptional activation                                | (28,29) |
|         |       | Ash1 (D. melanogaster)                        | transcriptional activation                                | (30)    |
|         | Lvs9  | Suv39h,Clr4                                   | transcriptional silencing (tri-Me)                        | (32,33) |
|         |       | G9a                                           | transcriptional repression<br>genomic imprinting          | (34)    |
|         |       | SETDB1                                        | transcriptional repression (tri-Me)                       | (35)    |
|         |       | Dim-5 (N.crassa),<br>Kryptonite (A. thaliana) | DNA methylation (tri-Me)                                  | (36,37) |
|         |       | Ash1 (D. melanogaster)                        | transcriptional activation                                | (30)    |
|         | Lvs27 | Ezh2                                          | transcriptional silencing                                 | (38)    |
|         |       |                                               | X inactivation (tri-Me)                                   |         |
|         |       | G9a                                           | transcriptional silencing                                 | (34)    |
|         | Lys36 | Set2                                          | transcriptional activation (elongation)                   | (39)    |
|         | Lys79 | Dot1                                          | euchromatin                                               | (40)    |
|         |       |                                               | transcriptional activation<br>(elongation)                | (41)    |
|         |       |                                               | checkpoint response                                       | (42)    |
| H4      | Arg3  | PRMT1/6                                       | transcriptional activation                                | (43)    |
|         | 5.    | PRMT5/7                                       | transcriptional repression                                | (31)    |
|         | Lys20 | PR-Set7                                       | transcriptional silencing<br>(mono-Me)                    | (44)    |
|         |       | Suv4-20h                                      | heterochromatin (tri-Me)                                  | (45)    |
|         |       | Ash1 (D. melanogaster)                        | transcriptional activation                                | (30)    |
|         |       | Set9 (S. pombe)                               | checkpoint response                                       | (46)    |
|         | Lys59 | unknown                                       | transcriptional silencing                                 | (47)    |

REFERENCES: (1) Clarke, A.S. et al. (1999) Mol. Cell Biol. 19, 2515-2526. (2) Kimura, A. and Horikoshi, M. (1998) Genes Cells 3, 789–800. | (3) Schiltz, R.L. et al. (1999) J. Biol. Chem. 274, 1189–1192. | (4) Verreault, A. et al. (1998) Curr. Biol. 8, 96–108. (5) Kawasaki, H. et al. (2000) Nature 405, 195–200. (6) Suka, N. et al. (2001) Mol. Cell 8, 473-479. (7) Angus-Hill, M.L. et al. (1999) J. Mol. Biol. 294, 1311-1325. (8) Sobel, R.E. et al. (1995) Proc. Natl. Acad. Sci. USA 92, 1237-1241. (9) Grant, P.A. et al. (1999) J. Biol. Chem. 274, 5895-5900. | (10) Spencer, T.E. et al. (1997) Nature 389, 194-198. | (11) Bird, A.W. et al. (2002) Nature 419, 411–415. | (12) Ikura, T. et al. (2000) Cell 102, 463–473. | (13) Winkler, G.S. et al. (2002) Proc. Natl. Acad. Sci. USA 99, 3517-3522. (14) Hsieh, Y.J. et al. (1999) Mol. Cell. Biol. 19, 7697-7704. | (15) Mizzen, C.A. et al. (1996) Cell 87, 1261-1270. | (16) Sutton, A. et al. (2003) J. Biol. Chem. 278, 16887-16892. | (17) Howe, L. et al. (2001) Genes Dev. 15, 3144-3154. | (18) Daujat, S. et al. (2002) Curr. Biol. 12, 2090–2097. | (19) Xu, F. et al. (2005) Cell 121, 375–385. | (20) Masumoto, H. et al. (2005) Nature 436, 294–298. [ (21) Parthun, M.R. et al. (1996) Cell 87, 85–94. [ (22) Kuo, M.H. et al. (1996) Nature 383, 269-272. (23) Kelly, T.J. et al. (2000) Mol. Cell. Biol. 20, 7051-7058. (24) Hilfiker, A. et al. (1997) EMBO J. 16, 2054–2060. | (25) Ye, J. et al. (2005) Mol. Cell. 18, 123–130. | (26) Briggs, S.D. et al. (2001) Genes Dev. 15, 3286-3295. (27) Wang, H. et al. (2001) Mol. Cell. 8, 1207-1217. (28) Nakamura, T. et al. (2002) Mol. Cell. 10, 1119–1128. (29) Sedkov, Y. et al. (2003) Nature 426, 78–83. (30) Beisel, C. et al. (2002) Nature 419, 857-862. (31) Pal, S. et al. (2004) Mol. Cell. Biol. 24, 9630-9645. (32) Rea, S. et al. (2000) Nature 406, 593–599. (33) Nakayama, J. et al. (2001) Science 292, 110–113. (34) Tachibana, M. et al. (2001) J. Biol. Chem. 276, 25309–25317. (35) Schultz, DzC. et al. (2002) Genes Dev. 16, 919–932. | (36) Tamaru, H. and Selker, E.U. (2001) Nature 414, 277–283. | (37) Johnson, L. et al. (2002) Curr. Biol. 12, 1360–1367. | (38) Cao, R. et al. (2002) Science 298, 1039–1043. (39) Krogan, N.J. et al. (2002) Mol. Cell. Biol. 23, 4207-4218. (40) Feng, Q. et al. (2002) Curr. Biol. 12, 1052-1058. [ (41) Krogan, N.J. et al. (2003) Mol. Cell. 11, 721-729. [ (42) Huyen, Y. et al. (2004) Nature 432, 406-411. | (43) Strahl, B.D. et al. (2001) Curr. Biol. 11, 996-1000. | (44) Nishioka, K. et al. (2002) Mol. Cell. 9, 1201-1213. (45) Schotta, G. et al. (2004) Genes Dev. 18, 1251-1260. (46) Sanders, S.L. et al. (2004) Cell 119, 603-614. (47) Zhang, L. et al. (2003) Chromosoma 112, 77-86. (48) Daujat, S. et al. (2005)

J. Biol. Chem. 280, 38090-38095. | (49) Kuzmichev, A. et al. (2004) Mol. Cell 14, 183-193. | (50) Barber, C.M. et al. (2004) Chromosoma 112, 360-371. [ (51) Zhang, Y. et al. (2004) J. Biol. Chem. 279, 21866-21872. | (52) Aihara, H. et al. (2004) Genes Dev. 18, 877-888. | (53) Harvey, A.C. et al. (2005)

Direct Stimulatory Modification

- Direct Inhibitory Modification

- - - Tentative Inhibitory Modification

- Transcriptional Stimulation Transcriptional Inhibition



➤ Joining of Subunits ----> Translocation Separation of Subunits or Cleavage Products

### Phosphorylation

| Histore | Site                     | Histone-modifying Enzymes | Prepesed Function                                      | Ref. #  |
|---------|--------------------------|---------------------------|--------------------------------------------------------|---------|
| H1      | Ser27                    | utknowt                   | transcriptional activation,<br>dromatin decordensation | (48,49) |
| H2A     | Ser1                     | utknowt                   | mitosis, chromatin assembly                            | (50)    |
|         |                          | MSK1                      | transcriptional repression                             | (51)    |
|         | Ser122 (S. cerevisiae)   | UTKIDWT                   | DNA repair                                             | (53)    |
|         | Ser129 (S. cerevisiae)   | Mec1, Tel1                | DNA repair                                             | (54,55) |
|         | Ser139 (manmalian H2A.X) | ATR, ATM, DNA-PK          | DIVA repair                                            | (56-58) |
|         | Thr119 (0. melanogaster) | NHK1                      | mitosis                                                | (52)    |
| H2R     | Ser10 (S. cerevisiae)    | Ste20                     | apoptosis                                              | (58)    |
| 116.0   | Ser14 (vertebrates)      | Mist1                     | apoptosis                                              | (60)    |
|         |                          | utknowt                   | DNA repair                                             | (61)    |
|         | Ser33 (II. melanogester) | TAP1                      | transcriptional activation                             | (62)    |
|         | Ser36                    | AMPK .                    | transcriptional activation                             | (84)    |
| H3      | Ser10                    | Aurara-B Kinase           | mitosis, maiosis                                       | (64.65) |
|         |                          | MSK1, MSK2                | immediate-early gene activation                        | (66)    |
|         |                          | RX-a                      | transcriptional activation                             | (67)    |
|         |                          | Self                      | transcriptional activation                             | (68)    |
|         | Ser28 (manmala)          | Aurora-8 kinase           | mitosis                                                | (70)-   |
|         |                          | MSK1, MSK2                | immediate-early activation                             | (96,71) |
|         | Thr3                     | Haspin/Gsg2               | nitosis                                                | (63)    |
|         | Thr6                     | PRODU                     |                                                        | (85)    |
|         | Thr11 (mammals)          | DIK/200                   | mitoeis                                                | (69)    |
|         | 7,141                    | J482                      | transcriptional activation                             | (86)    |
|         | Ty145                    | PRIZZ                     | apoptosis                                              | (87)    |
| H4      | Ser1                     | HIROWI                    | mitosis, chromatin assembly                            | (50)    |
|         |                          | CK2                       | DNA repair                                             | -0.2    |

#### Ubiquitylation

| Histone | Site                   | Histone-modifying Enzymes | Proposed Function                            | Ref. # |
|---------|------------------------|---------------------------|----------------------------------------------|--------|
| H2A     | Lys119 (mammals)       | Ring2                     | spermatogenesis                              | (73)   |
| H2B     | Lys120 (mammais)       | UbdH6                     | melasis                                      | (74)   |
| men     | Lys123 (S. cerevisiae) | Radio                     | transcriptional activation<br>excitoreration | (75)   |

#### Sumoylation

| Histore | Site                            | Histone-modifying Enzymes | Proposed Function          | Ref. # |
|---------|---------------------------------|---------------------------|----------------------------|--------|
| H2A     | Lys726 (S. cerevisiae)          | 10:9                      | hanseriphional repression  | (76)   |
| H2B     | Lyañ or Lya? (S. caraviaiza)    | Ube9                      | hanscriptional' repression | (78)   |
| H4      | N-terminal tail (S. cerevisiae) | U6:9                      | banseriptional repression  | (77)   |

#### Biotinylation

| Histone | Site  | Histore-modifying Enzymes | Proposed Function   | Rel.#   |
|---------|-------|---------------------------|---------------------|---------|
| H2A     | Lys9  | bistkridter               | ankopen             | (78)    |
|         | Ljsf8 | bisficidase               | aokopet             | (78)    |
| H3      | (394  | bisticidese               | gare expression     | 09      |
|         | 498   | bisficidase               | gine aquession      | (29)    |
|         | Lys10 | bisficidase               | gine supression     | 09      |
| H4      | Lyst2 | bisficidase               | DNA damage response | (80,81) |

Severics 170, 543-553. (54) Downs, J.A. et al. (2000) Nature 408, 1001-1004. (55) Shroff, R. et al. (2004) Curr. Biol. 14, 1703-1711. (56) Ward, UM. and Chen, J. (2001) J. Biol. Chem. 276, 47759-47762. (57) Barma, S. et al. (2001) J. Biol. Obert. 276, 42462–42467. (58) Park, E.J. et al. (2003) Nucleic Acids Res. 31, 6819-6827. [59] Ahn, S.H. et al. (2005) Cell 120, 25-36. [60) Cheung, W.L. et al. (2003) Cell 113, 507-517. (61) Fernandez-Capetillo. O. et al. (2004). J. Exp. Med. 199, 1671-1677. (62) Maile, T. et al. (2004) Science 304, 1010–1014. 🛛 (83) Dai, J. et al. (2004) Genas Dec 19, 472–488. 🗍 (84) Hendail, M.J. et al. (1997) Chromesona 106, 348-360. (66) Hsu, J.Y. et al. (2000) Cell'102, 279-291. (66) Soloaga, A. et al. (2003) EMBO J. 22, 2708-2797. (177) Arrest, V. et al. (2003) Nature 423, 659-663. (169) Lo, W.S. et al. (2001) Science 293, 1142-1146. | (80) Press, U. et al. (2003) Nucleic Acids Res. 31, 878-885. | (70) Cate, H. et al. (2002) Genes Cells 7, 11–17. [71] Zhong, S. et al. (2001) J. Biol. Chem. 276, 33213–33219. [72] Cheung, WL. et al. (2005) Curr. Biol. 15, 656-660. (73) Wang, H. et al. (2004) Nature 431, 673-678. (74) Zhu, B. et al. (2005) Mbl. Gall. 20, 601-611. (75) Rolzyk, K. et al. (2000) Solenor 287, 501-504. (76) Nathan, D. et al. (2006) Genes Dev. 20, 966–576. | (77) Shio, Y. and Eisenman, R.N. (2003) Proc. Natl. Acad. Sci. USA 100, 13225-13230. (70) Chew, Y.C. et al. (2006) J. Mutr. Biochem. 17, 225-233. (79) Kalaa, K. et al. (2005) FEES J. 272, 4249-4259. | (80) Componentie, G. et al. (2004) Eur. J. Biochem. 271, 2257-2263. | (81) Kothapalli, N. and Zempleni, J. (2004) /545EB J. 18, 103-104. [ (82) Montis, S.A. et al. (2007) J. Biol Chem. 282, 7632-7640. (03) DiLorenzo, A. et al. (2011) FEBS Lett. 565, 2024-2031. (04) Bungard, D. et al. (2010) Solince 329, 1201-1205. (85) Netzgor, E. et al. (2010) Nature 464, 752-796. (86) Devision, M.A. et al. (2009) Natore 461, 819-822. 487) Hurd, P.J. et al. (2009) J. Biol. Chem. 284, 16575-16583.

## Additional Reference Materials

at www.cellsignal.com/reference

#### **Human Protein Kinases**



Please see our website for an online version of this dendrogram with links to detailed information for each kinase group. Individual kinases are now linked to the PhosphoSitePlus® database, which provides protein overviews and information on protein modification sites and domains.

TUDOR

#### **Protein Domains**

The structure and function of numerous protein domains that play an integral role in signal transduction is reviewed and available on our website.



### Signal Transduction Tutorials and Cellular Landscapes

Signal transduction tutorials on our website illustrate specific cellular signal transduction events through digital animation and text. The cellular landscapes are photo-realistic renderings of various cellular structures with interactive features.











Ninase Phosphalase









### Signaling Pathways Activating p38 MAP Kinase

p38 MAPKs (p, g, g, and 6) are members of the MAPK family that are activated by a variety of environmental stresses and inflammatory cytokines. As with other MAPK coscades, the membrane-proximal component is a MAPKKK, typically a MERK or a mixed lineage kinase (MLK). The MAPROK phosphorylates and activates MRK3/6, the p38 MAPK kinases. MRX3/6 can also be activated directly by ASK1, which is stimulated by apoptotic stimuli. p38 MAPK is involved in regulation of HSP27, MAPKAPK-2 (MR2), MAPKAPK-3 (MR3), and several transcription factors including ATF-2, Start, the Mao' Myc complex, MEF-2, Eik-1, and indirectly CREB via activation fMSK1.

Select Reviews: Coulthard, L.R., White, D.E., Jones, D.L., McDermott, M.F., and Burchill, S.A. (2009) Trends Mol. Med. 15, 369–379. Cuadrado, A. and Nebreda, A.R. (2010) Biochem. J. 429, 403–417. Idel Barco Barrantes, L. and Nebreda, A.R. (2012) Stochem. Soc. Trans. 40, 79–34. Huang, G., Shi, L.Z., and Chi, H. (2009) Cylolokice 48, 161–169. Kosteriko, S., Dumitriu, G., Lagreid, K.J., and Moens, U. (2011) World J. Biol. Chem. 2, 73–89. Shiryaev, A. and Moens, U. (2010) Cell. Signal: 22, 1185–1192.

We wealt like to thank Prot. John Blenis, Harvard Medical School, Boston, MA, for contributing to this diagram.



The MMPN/Erk signaling cascade is activated by a wide variety of receptors involved in growth and differentiation including receptor tyresine kineses (FIRia), integrina, and ion channels. The specific components of the cascade vary greatly among different stimul, but the architecture of the pathway usually includes a set of adaptors (Sinc, GRI2, Cik, etc.) Inking the receptor to a guarine nucleotide exchange factor (SOS, C36, etc.) transducing the signal to small GTP-binding potens (Ras, Rauth, which in turn activate the case unit of the cascade composed of a MAPPOK (Raf), a MAPKK (MEK1/2), and MAPK (Erk). An activated Erk dimer can regulate targets in the cylosoli and also translocate to the nucleus where it phosphorylates a variety of transcription factors regulating gene expression.

Select Reviews: Anjum, R. and Benis, J. (2008) Nat. Rev. Mot. Cell Blot. 9, 747–758. [ De Luta, A., Molello, M.R., D'Alessie, A., Pergameno, M., and Mormanna, N. (2012) Expert Opin. Ther. 2, 17–27. [ Reyes, S.M. (2008) Cancer Messessie Rev. 27, 253–261. [ Non, E.K. and Choi, E.J. (2010) Blochmu, Blophys. Acta 1002, 396–405. ] Mendoes, M.C., Er, E.E., and Blenis, J. (2011) Trends Blochem. Sci. 36, 320–328. [ Romeo, Y., Zhang, X., and Roux, PP. (2012) Blochem. J. 441, 553–569. [ Roskolik, R.J. (2012) Blochem. Blophys. Aes. Common. 417, 5–10. [ Tolyman, W.E. and Rauen, K.A. (2009) Cart. Opin. Genet. Dev. 19, 230–236.

We would like to thank Prof. John Blenis, Harvard Medical School, Boston, MA, for reviewing this diagram.



Direct Inhibitory Modification

- - Tentative Inhibitory Modification

Transcriptional Stimulation



Joining of Bubunits -----+ Translocation Separation of Subunits or Cleavage Products

→ Multistep Stimulatory Modification — → Tentative Stimulatory Modification



### G Protein-coupled Receptors Signaling to MAPK/Erk

G potelin-coupled receptors (GPCHs) are activated by a wide variety of external stimuli. Upon receptor activation, the G potelin exchanges GDP for GTP, causing the dissociation of the GTP-bound o and (b) subunits and triggering diverse signaling cascades. Receptors coupled to different heteotrimeric G protein subtypes can utilize different solutions to activate the small G protein/ MAPK cascade, employing at least three different classes of Tjr kinases. Sic family kinases are recruited following activation of PGNg (b) (b) subunits. They are also recruited by receptor internalization, crossactilation of receptor Tjr kinases, or by signaling through an integrin scatted involving Py62 and/or PAK. GPCRs can also employ PLCB to mediate activation of PCR and CaMRI, which can have either stimulatory or initiation correspondences for the downstream MAPK pathway.

Select Reviews: Aoki, Y., Nihori, T., Narumi, Y., Kure, S., and Matsubara, Y. (2008) *Hurt. Mutat.* 29, 992–1006. Caunt, C.J., Findt, A.R., Sedgiey, K.R., and McArdie, C.A. (2006) *Trends Evolucion. Metab.* 17, 276–283. Goldsmith, Z.G. and Dhanasakaran, D.N. (2007) *Oncogene* 26, 3122–3142. Kim, E.K. and Dhoi, E.J. (2010) *Bischire, Bisphys. Acta.* 1802, 396–405. McKay, M.M. and Norison, D.K. (2007) *Oncogene* 26, 3113–3121.

We would like to thank Prof. John Blenis, Hanard Medical School, Boston, MA, for reviewing this diagram.



pro-apoptotic

Receptor

Phosphatase

### SAPK/JNK Signaling Cascades

GAPIGEF

GTPase

pro-survival

Stress-activated protein kinases (SAPR)/Lun amine-terminal kinases (JNK) are members of the MAPK lamity and are activated by a variety of environmental stresses, inflammatory cytokines, growth factors, and GPCR aganists. Stress signals are delivered to this cascade by small GPIsses of the Rho family (Rac, Rho, cdoX2), Ar with the other MAPKs, the membrane proximal kinase is a MAPROK, typically MEKCI–4, or a member of the mixed lineage kinases (MUS) that phosphorylates and activates MR44 (SEK) or MN07, the SAPR/LINK kinases. Alternatively, MR447 can be activated by a member of the germinal center kinase (GDO) family in a GPAse-independent memer. SAPKUMK torstocates to the nucleus where it can regulate the activity of multiple transcription factors.

Select Reviews: Bogoperitch, M.A., Ngpel, K.R., Zhao, T.T., Yeap, Y.Y., and Ng, D.C. (2010) Biochiro. Biophys. Acta 1804, 463–475. Chen F. (2012) Cancer Res. 72, 379–580. Device: Cancer Res. 72, 379–591. Device: Cancer Res. 72,

We would like to thank Ptol. John Blenis, Hanard Medical School, Boston, MA, for reviewing this diagram.

G-protein

Ribosomal subunit.

CO Acetalaee

Descetylase



### Regulation of Apoptosis Overview

Apostosis is a resultated cellular suicide mechanism characterized by nuclear contensation, cell shrinkage, membrane blebbing, and DNA fragmentation. Caspases, a tamily of cysteine protezses, are the central regulators of apoptosis. Initiator caspases (including caspase 2, -8, -9, -10, -11, and -12) are closely coupled to pro-apoptotic signals. Once activated, these caspases cleave and activate downstream effector caspases (including caspase-3, -6, and -7), which in turn execute apoptosis by cleaning cellular proteins following specific Asp residues. Activation of Fas and TNFR by FasL and TNF; respectively, leads to the activation of caspase-8 and -10. DNA damage induces the expression of PIDD, which binds to RAIDD and caspase -2 and leads to the activation of caspase-2. Cytochrome c released from damaged mitochondria is coupled to the activation of caspase-9. XAP inhibits caspase-3, -7, and -9. Millochondria release multiple pro-apoptotic molecules, such as Smac/ Diablo, AF, HtrA2, and EndoG, in addition to cytochrome c. Smac/Diablo binds to XIAP, preventing it from inhibiting cospases. Caspase-11 is induced and activated by pathological pro-inflammatory and pro-apoptotic stimuli and leads to the activation of caspase-1, thereby promoting inflammatory response and apoptosis by directly processing caspase 3. Caspase-12 and caspase-7 are activated under ER stress conditions. Anti-apoptotic ligands, including growth factors and cytokines, activate Akt and pSOREK. Akt inhibits Bad by direct phosphorylation and prevents the expression of Birn by phosphorylating and inhibiling the Forkhead family of transcription factors (FoxD). FoxD promotes apoptosis by upregulating pro-apoptotic molecules such as FasL and Elim.

Select Reviews: Deglarev, A. and Yuan J. (2008) Not. Rev. Mot. Cell Biol. 9, 378–390. | Fuchs, Y. and Steller H. (2011) Cell 147, 742–758. | Indian, LR, Tuto, G., Pervaiz, S., and Brenner C. (2011) Biochim. Biophys. Acta. 1807, 735–745. | Kaufmann, T., Strasser, A., and Jost, P.J. (2012) Cell Death Diffic: 19, 42–50. | Karokwa, M. and Kombluth, S. (2009) Cell 138, 838–854. | Pradell, LA., Bönthoau, M., and Ricci, J.E. (2010) Cell. Mot. Life Sci. 67, 1569–1567. | Van Herraveghe, F., Fastjiers, N., Declerco, W., and Vandenabeele, P. (2010) Cell. Mot. Cife Sci. 67, 1567–1579.

We would like to thank Post. Junying Yuan, Hanard Medical School, Boston, MM, for networking this diagram.



## **Inhibition of Apoptosis**

Cell survival requires the active inhibition of apoptosis, which is accomplicited by inhibiting the expression of pro-apoptotic factors as well as promoting the expression of arti-apoptotic factors. The PTKK pathway, activated by many nurvival factors, leads to the activation of Act, an important player in survival signaling. PTEN negatively regulates the PTKK/Ak pathway. Activated Ak phosphorylates and inhibits the pro-apoptotic Bd-2 family members Bad, Bax, caspase-9, GSK-3, and FoxO1. Many growth factors and cytokines induce anti-apoptotic Bd-2 family members. The Jaka and Src phosphorylate and activate Stat5, which in turn induces the expression of Bd-4, and Bd-2. Erk/2 and Bd-2. These Bd-2 family members protect the integrity of micchonoha, preventing cytochrome c release and the subsequent activation of caspase-9. TMF-n may activate both pro-apoptotic and anti-apoptotic pathways: TMF-n can induce apoptosis by activating caspase-8 and -10, but can also inhibit apoptosis via MF-48, which induces the expression of arti-apoptotic genes activates of Ld-2. Linkbit TMF-o signaling by linking to TRW/2, FLP inhibits the activation of caspase-8.

Salect Reviews: Brurnetti, G., Salmanidis, M., and Ekert, P.G. (2010) Cell. Mol. Life Sci. 67, 1619–1630. Fuchs, Y. and Steller H. (2011) Cell 147, 742–758. Fulda, S. and Vucic, D. (2012) Nat. Rev. Drog Discov. 11, 109–124. Kaufmann, T. Strasser, A., and Jost, P.J. (2012) Cell Death Differ. 19, 42–50. Euper, J. and Meier, P. (2010) Carr. Opin. Cell Biol. 22, 872–881. F. Rang, Y. and Datelhorst, C.W. (2008) Anno. Rev. Physiol. 70, 73–91. Sci. Netwoods, S.M. and Astwell, J.D. (2008) Mol. Cell 30, 123–135. Zhang, X., Yang, N., Haddien, T.J., and Rishi, A.K. (2011) disctoim. Biophys. Acta. 1013, 1979–1986.

We would like to thank Prof. Junying Yuan, Harvard Medical School, Boston, MA, for reviewing this diagram.

Direct Stimulatory Modification

Multistep Stimulatory Modification
 Multistep Inhibitory Modification

ion — — + Tentative Stimulatory Modification — — – Tentative Inhibitory Modification Transcriptional Stimulation



Joining of Bubunits -----+ Translocation Separation of Subunits or Cleavage Products





### Death Receptor Signaling

Apoptosis can be induced through the activation of death receptors including Fas. TNFoR. DR3. DR4, and DR5 by their respective ligands. Death receptor ligands characteristically initiate signaling via receptor disometization, which in turn results in the recruitment of specialized adaptor proteins and activation of paspase paspades. Binding of Fasl, induces Fas trimerization, which recruits initiator caspase-8 via the adaptor protein FADO. Caspase-8 then oligomerizes and is activated via autocatalysis. Activated paspase-8 stimulates apoptosis via two parallel cascades: it can directly cleave and activate caspase-3, or alternatively, it can cleave Bid, a pro-apoptotic Bcl-2 family protein. Truncated Bid ((Bid) translocates to mitochondria, inducing cytochrome c release, which sequentially activates caspase-9 and -8. TNF-0 and DR-3L can deliver pro- or antiapoptotic signals. TNFoR and DR3 promote apoptosis via the adaptor proteins TRACO/ FADD and the activation of caspase-8. Interaction of TNF-o with TNFoR may activate the NF+x8 pathway via NIK/IKX. The activation of NF+x8 induces the expression of pro-survival genes including Bol-2 and FLIP, the latter can directly inhibit the activation of caspase-8. FasL and TNF-0 may also activate JNK via ASK1/WKK7. Activation of JNK may lead to the inhibition of Bcl-2 by phosphorylation. In the absence of caspase activation, stimulation of death receptors can lead to the activation of an alternative programmed cell death pathway termed necroptosis by forming complex lib.

Select Reviews: Decience, W., Vanden Berghe, T., and Vandenabeele, P. (2009) Cell 138, 229–232. | Fuchs, Y. and Steller H. (2011) Call 147, 742–758. | Kantani, C. and Wakcask, H. (2011) Blocklin, Bilghys. Acts. 1813, 558–653. | Kaufmann, T., Shasser, A., and Jast, P.J. (2012) Cell Death Differ: 19, 42–50. | Lawik, LM. and Kammer, PH. (2012) Cell Death Differ: 19, 36–41. | Van Herreveghe, F., Festjers, M., Dederoq, W., and Vandenabeele, P. (2010) Cell. Mol. Life Sci. 67, 1657–79. | Wajart, H. and Scheurich, P. (2011) FBS J. 278, 862–876.

We woold like to drank Prof. Junying Yuan, Hanvard Medical School, Boston, MA, for reviewing file diagram.

### Mitochondrial Control of Apoptosis

The Bci-2 family of proteins regulate apoptosia by controlling mitschondrial permeability. The anti-apoptatic proteins Bci-2 and Bci-xL reside in the outer mitochondrial wall and inhibit cytochrome c release. The proapoptotic BcI-2 proteins Batl, Bid, Bax, and Bim may reside in the cytosol but translocate to mitochondria following death signaling, where they promote the release of cytochrome c. Bad translocates to mitochondria and forms a pro-apaptotic complex with Bel-xL. This translocation is initialited by survival factors that induce the phosphorylation of Bad, leading to its cytosolic sequestration. Cytosofic Bid is cleaved by caspase-8 following signaling through Fax: its active fragment ((Elid) translocates to mitochondria. Bair and Birn translocate to mitochondria in response to death atimuli, including sunival factor withdrawal. Activated following DNA damage. p53 induces the transcription of Bax, Naxa, and PUMA. Upon release from mitochondria, cytochrome c birds to Apal-1 and forms an activation complex with caspase-9. Although the mechanism(p) regulating mitschondrial permeability and the release of cytochrome c during apagtosis are not fully understood, Bcl-xL, Bcl-2, and Bax may influence the voltage-dependent anion channel (VCAC), which may play a role in regulating cytochrome c release. Mulei/APF-8P1 is a DNA damage-activated E3 utiquitin ligase for p53, and Mci-1, an anti-apoptotic member of Bci-2.

Select Reviews: Brenner, D. and Mak, T.W. (2009). Corr. Opin. Call Biol. 21, 871– 877. [ Chaloh, A., Khossavi-Far, R. (2008). Adv. Eqs. Med. Biol. 615, 25–45. [ Lindsay, J., Espesti, M.D., and Gilmore, A.P. (2011). Biochim. Biophys. Acta. 1613, 532–539. ] Dia, M.S., Nawaz, M., and Amar, H. (2011). Mol. Call. Biochem. 351, 41–68. [ Peadoli, L.A., Bénétesau, M., and Amar, H. (2011). Mol. Call. Biochem. 351, 41–69. ] Peadoli, L.A., Bénétesau, M., and Ricci, J.E. (2010). Cell. Mol. Cell. Sci. 67, 1589–1597. ] Rong, Y and Dimethosst, C.W. (2008). Annu. Rev. Physiol. 70, 73–91. ] Speidel, D. (2010). Tendo Call Biol. 20, 14–24. ] Sean, D.F., Norria, K.L., and Youle, R.J. (2008). Genee. Dev. 22, 1577–1590.

We would like to thank Prof. Junying Yoan, Harvard Medical School, Boston, MA, For reviewing this diagram.

![](_page_14_Picture_11.jpeg)

![](_page_14_Picture_12.jpeg)

![](_page_14_Picture_13.jpeg)

![](_page_14_Picture_14.jpeg)

![](_page_14_Picture_15.jpeg)

![](_page_14_Picture_16.jpeg)

![](_page_14_Picture_17.jpeg)

![](_page_15_Figure_1.jpeg)

![](_page_15_Figure_2.jpeg)

### Autophagy Signaling

Macroautophagy, often referred to as autophagy, is a catabolic process that results in the autophagosonic-lysosonal degradation of bulk cytoplasmic contents, abnormal protein appregates, and excess or damaged organelies. Autophagy is generally activated by conditions of nutrient degrivation but has also been associated with physiological as well as pathological processes such as development, differentiation, neurodegenerative diseases, stress, infection, and cancer. The kinase mTOR is a critical regulator of autophagy induction, with activated mTOR (Aid and MAPK signaling) suppressing autophagy, and negative regulation of mTOR (AMPK and p53 signaling) promoting it Three related serine/threenine kinases, UNC-51-like kinase -1, -2, and -3 (ULK1, ULK2, URLS), which play a similar role as the yeast Alg1, act downstream of the mTOR complex. ULK1 and ULK2 form a large complex with the mammalian homolog of an autophage related (Atg) gene product (mAtg13) and the seaffold protein FIP200 (an ortholog of yeast Alg17). Class III PI3K complex, containing Mips34, Beclin-1 (a mammalian homolog of yeast Atg6), p150 (a mammalian homolog of yeast Vps15), and Atg14-like protein (Ag14L or Bankor) or ultraviolet imadiation resistance-associated gene (UVRAG), is required for the induction of autophagy. The Alg genes control the autophagosome formation through Atg12-Atg5 and LC3-II (Atg8-II) complexes. Atg12 is conjugated to Alg5 in a ubiquitin-like reaction that requires Alg7 and Alg10 (E1 and E2-like enzymes, respectively). The Alg12-Alg5 conjugate then interacts noncovalently with Alg16 to form a large complex. LCS/Atg8 is cleaved at its C-terminus by Atg4 protease to generate the cytosolic LC3-LLC3-L Is conjugated to phosphatidylethanolamine (PE) also in a ubiquitin like reaction that requires Alg7 and Alg3 (E1 and E2-like enzymes, respectively). The lipidated form of LC3, known as LC3-II, is attached to the autophagosome membrane. Autophagy and apoptosis are connected both positively and regatively, and extensive crosstalk exists between the two. During nutrient deficiency, autophagy functions as a pro-sunival mechanism; however, excessive autophage may lead to cell death, a process morphologically distinct from apoptosis. Several pro-apoptotic signals, such as TNF, TRAL, and FADD, also induce autophagy. Additionally, Bcl-2 inhibits Beclin-1-dependent autophagy, thereby functioning both as a pro-survival and as an antiautophapic regulator.

Select Reviews: Alers, S., Löttor, A.S., Wesselborg, S., and Stork, B. (2012) Mol Cell Biol 32, 2–11. Cotlegno, P., Mehrpeur, M., and Proikas-Cezanne, T. (2011) Nat. Rev: Mol. Cell Biol 13, 7-12. Lexino, B. and Kroemer, G. (2006) Cell 132, 27-42. Mizushima, N. and Komatsu, M. (2011) Call 147, 728-741. Mizushima, N., Levine, B., Duenio, A.M., and Klionsky, D.J. (2008) Nature 451, 1069-1075. | Yang, Z. and Klionsky, D.J. (2010) Curr. Opin. Cell.Biol. 22, 124-131.

We would like to thank Prof. Bingrov Hu, University of Maryland School of Medicine, Baldenore, M2 for reviewing this diagram.

## PI3 Kinase/Akt Signaling

Since its initial discovery as a proto-oncagene, the serine/threonine kinase Akt jalso known as protein kinane B or PKB has become a major focus of attention because of its critical regulatory role in diverse cellular processes, including cancer progression and insulin metabolism. The Akt cascade is activated by receptor tyrosine kinases, integrins, 8 and T cell receptors, cytokine receptors, G-protein-coupled receptors and other stimuli that induce the production of phosphatidylinositol 3,4,5 triphosphates (Ptdhe(3,4,5)P3) by phosphoinositide 3-kinase (POK). These lipids serve as plasma membrane docking sites for proteins that harbor pleckstrin-homology (PH) domains, including Akt and its upstream activator PDK1. The tumor suppressor PTEN is recognized as a major inhibitor of Akt and is frequently lost in human tumors. Recently, there has been increased focus on phosphatases that can inactivate Akt, including PHLLP.

There are three highly related isoforms of Akt (Akt1, Akt2, and Akt3) and these represent the major signaling arm of PI3K. For example, Akt is important for insulin signaling and glucase metabolism, with genetic studies in mice revealing a central role for Akt2 in these processes. In addition, germline mutations of Akt have been identified in pathological conditions of cancer and insulin metabolism.

Ait regulates cell growth through its effects on the TSC1/TSC2 complex and mTOR pathways, as well as cell cycle and cell proliferation through its direct action on the CDK inhibitors p21 and p27, and its indirect effect on the levels of caclin D1 and p53. Aid is a major mediator of cell survival through direct inhibition of one-associatic alonais such as the pro-apoptotic regulator Bad and the Fox0 and Myc family of transcription factors. T lymphocyte trafficking to lymphoid tissues is controlled by the expression of adhesion factors downstream of Akt. In addition, Akt has been shown to regulate proteins involved in neuronal function including GABA receptor; ataxin-1, and huntingtin proteins. Aik has been demonstrated to interact with Smad molecules to regulate TGF-& signaling. Finally, lamin A phosphorylation by Akt could play a role in the structural organization of nuclear proteins. These findings make Akt/PKB an important therapeutic target for the treatment. of cancer, diabetes, laminopathies, stroke, and neurodegenerative disease.

#### For selected reviews see www.cellsignal.com

We would like to thank Prof. Michael Scheid, York University of Taronto, Ontario, for seviewing this diagram

 Direct Stimulatory Modification - Direct Inhibitory Modification

- - Tentative Inhibitory Modification

Transcriptional Stimulation Transcriptional Inhibition

![](_page_15_Picture_17.jpeg)

Joining of Subunits ----+ Translocation 💪 Separation of Subunits or Cleavage Products

 Multistep Stimulatory Modification - Multistep Inhibitory Modification

![](_page_16_Figure_1.jpeg)

### Akt Substrates Table

MAPK, mTDR, and the PISKAkd pathways are key signaling pathways activated downstream of oncogenic receptor tyrosine kinases (RTKs). All of these pathways activate AGC kinase family members, including Akt, RSK, and p70 S6 kinases, whose protein substrates are phosphorylated at the RxRxdS/T motif.

In a phosphoproteomic study co-authored by scientists in the Cell Signaling Technology (CST) Site Discovery Group Sici. Signal. (2010) 24;3(135):t664), over 300 novel downstream substitutes for these ASC family sinases were identified. The experimental approach involved the use of PhosphoScan<sup>®</sup>, CST's proprietary methodology for quantitative profiling of post-translational modifications. A key step was the development of a RxRooS/T motif antibody, which was then used as an affinity reagent to selectively immunoprecipitate phosphorylated substates of AA, RSK, and p70 36 kinases. The antibody use employed in PhosphoScan in three different cancer cell lines, dependent on either EERR, or Met, or PDGRR, allowing mapping of the signaling network downstream of these RRKs. Substates included proteins involved in many cellular functions, including scaffolding, protein stability, metabolism, trafficking, and motify see figure).

For more information, visit PhosphoSitePlus®, CST's manually curated post-translational modification resource available at www.phosphosite.org, where all information on the abserved substrate phosphorylation taus been made available.

- worksamin + RTK inhibitor
 - REK inhibitor
 - REK inhibitor
 - RTK inhibitor
 - RTK inhibitor

C 2007-2013 Cell Signaling Technology, Inc.

| Substrate  | Isoferm    | Organism | Site         | Human Site   | Sequence (+/-7)                          | PNID                                               | Substrate Function and Effect of Phosphorylation                                                                                                                                                                                                 |
|------------|------------|----------|--------------|--------------|------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14-3-3 (   | Akt1       | human    | 558          | \$58         | WGARRSsWRWssI                            | 11956222                                           | a key regulatory protein in signal transduction, checkpoint control, apoptotic, and<br>nutrient-sensing pathways; effect of phosphorylation is unknown                                                                                           |
| acinus     | Akt1       | human    | S1180        | S1180        | GPR:/R:/R:/RORRINE                       | 18559500, 16177823                                 | induces chromatin condensation during apoptosis; phosphorylation inhibits this process                                                                                                                                                           |
|            | Akt1       | rat      | \$1329       | \$1331       | HSRSRSRsTPVRDRG                          | 16177823                                           | induces chromatin condensation during apoptosis; phosphorylation inhibits this process                                                                                                                                                           |
| ACLY       | Akt1       | mouse    | \$455        | \$455        | PMPSRMeFeESPMD                           | 16007201                                           | catalyzes the formation of acetyl-CoA and oxaloacetate (DAA) in the cytosol;<br>phosphorylation enhances the catalytic activity of the enzyme                                                                                                    |
| ADR82      | Ald1       | human    | 5346         | 5346         | LLCLARssLKAyGNG                          | 11809767                                           | a receptor that binds epinephrine and nonepinephrine, acting as a neuromodulator in the<br>central nervous system and as a hormone in the vascular system; phosphorylation in<br>response to insulin stimulation leads to sequestration of ADBR2 |
| Akt1       | Ald1       | human    | S246, T72    | 5246, T72    | LSRERWFsedRARFY,<br>TERPRPMERINCLO       | 16549426                                           | activated by insulin and various growth and survival factors to function in a.<br>wortmannin-sensitive PI3 kinese-involved pathway controlling survival and apoptosis;<br>autophosphorylation activates the kinase                               |
|            | Akt1       | mouse    | \$473        | \$473        | RPHEPOF STEAS GIA.                       | 11570877, 10722653                                 | activated by insulin and various growth and survival factors to function in a.<br>wortmannin-sensitive PI3 kinase-involved pathway controlling survival and apoptosis;<br>autophosphorylation activates the kinase                               |
| AMPKA1     | Akt1       | rat      | \$485        | \$485        | ATPORSGEISWARSC                          | 16340011                                           | heterotrimeric complex that plays a key role in the regulation of energy homeostasis;<br>phosphorylation regulates AVPK activity                                                                                                                 |
| AMPKA2     | Akt1       | rat      | 5491         | 5491         | STPORSESAAGLHRP                          | 16340011                                           | heterotrimeric complex that plays a key role in the regulation of energy homeostasis;<br>phosphorylation regulates AMPK activity                                                                                                                 |
| APS        | Akt1       | rat      | 5588         | 5598         | SARSRSNøTEHLLEA                          | 16141217                                           | an adaptor protain recruited to the insulin receptor to signal insulin-stimulated glucose<br>transport; phosphorylation promotes membrane localization                                                                                           |
| AR         | Akt1       | human    | \$213, \$791 | S213, S791   | SGRAREA&GAPT&SK,<br>CVRMRHLsQEF6WLQ      | 11404460, 14555644, 17470458, 11156376             | nuclear receptor; phosphorylation suppresses AR activation, expression of AR target<br>genes, and AR-mediated apoptosis                                                                                                                          |
| artaptin 2 | Akt1       | human    | 5260         | 5260         | GTRERLESAGATEQA                          | 15809304                                           | ADP ribosylation factor-interacting protein, implicated as a factor in Huntington's disease;<br>phosphorylation promotes neuronal cell sunival and neuroprotection                                                                               |
| ARHGAP22   | Akt1       | human    | S16          | \$16         | ARRARSKaLVMGEDS                          | 21969604                                           | a Rho GTPase activator that inhibits Rac1; phosphorylation allows 14-3-3 binding and<br>regulation of cell motility                                                                                                                              |
| AS160      | Akt1       | human    | 1642         | T642         | QFRRRAHIFSHPPss                          | 16880201, 11994271, 16835857                       | Insulin stimulated Rab GTPase-activating protein, structurally and functionally similar to<br>TBC1D1; phosphorylation results in increased Gut4 translocation                                                                                    |
| ASK1       | Akt1, Akt2 | human    | 583          | 583          | ATRGRG88/VG6GSRR                         | 11154276, 15782121, 15911620, 14500571, 12697749   | MAPKKK, induces apoptosis via JMK pathway, phosphorylation inhibits activity and<br>promotes survival                                                                                                                                            |
| ataxin-1   | AK1        | human    | \$775        | \$775        | ATRIKRRW6APESRIAL                        | 17540008, 12757707                                 | 14-3-3 binds to and stabilizes attain-1, which forms polyglutamine apgregates and<br>neurodegeneration; phosphorylation promotes 14-3-3 binding                                                                                                  |
| B-Raf      | Akt1, Akt3 | human    | \$365, \$429 | \$365, \$429 | GÜRDRESSAPWIHN,<br>PORERKSISSEDRN        | 10669359, 18451171                                 | signaling intermediate in Erk1/2 pathway; phosphorylation causes inhibition                                                                                                                                                                      |
| BAD        | Akt1       | human    | 599          | 599          | PFRORaRaAPPNLWA                          | 11020382, 10558090, 19667065                       | pro-epoptotic protein; phosphorylation inhibits function and promotes survival                                                                                                                                                                   |
|            | Akt1       | mouse    | S112, S155   | 575, 5118    | ETRISFIHISBYFRADZEE,<br>GRELARMISDEFEGSF | 9381178, 11723239, 10983986,<br>15123689, 10949026 | pro-apoptotic protein; phosphorylation inhibits function and promotes survival                                                                                                                                                                   |
| Bcl-10     | Akt1       | human    | 5218, 5231   | \$218, \$231 | EEGTCANISSEMFLPL,<br>PLRSRIVSRQ          | 16280327                                           | a CARD (cospase recruitment domain) containing protein shown to induce apoptosis and<br>activate NF-xB; phosphorylation induces nuclear translocation                                                                                            |
| Bol-xL     | Akt1       | rat      | \$106        | \$106        | LRYRRAFsDUTSQLH                          | 18951975                                           | prevents apoptosis through binding to apoptolic proteins; phosphorylation promotes VDAC binding                                                                                                                                                  |
| Bex1       | Akt1       | rat      | \$105        | \$102        | NLRERQLISHSLRAVS                         | 16498402                                           | a neurotrophin and nerve growth factor signaling adaptor molecule involved in promoting<br>cell cycle progression; phosphorylation prevents degradation by the proteasome                                                                        |
| Bim        | Akt1       | human    | 587          | S87          | FIFMRRasLLSRSss                          | 16282323                                           | pro-apoptotic protein; phosphorylation promotes 14-3-3 binding/inactivation and cell<br>survival                                                                                                                                                 |
|            |            |          |              |              |                                          |                                                    | <u> </u>                                                                                                                                                                                                                                         |

C Krase Phosphalase

HAR Control of Table

![](_page_16_Picture_10.jpeg)

![](_page_16_Picture_11.jpeg)

![](_page_16_Picture_12.jpeg)

![](_page_16_Picture_13.jpeg)

![](_page_16_Picture_14.jpeg)

| Akt Substrate | es Table   |          |                |                |                                     |                        |                                 |                                                                                                                                                                                                                                                                        |
|---------------|------------|----------|----------------|----------------|-------------------------------------|------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Substrate     | Isoform    | Organism | Site           | Human Site     | Sequence (+/-7)                     | PMID                   |                                 | Substrate Function and Effect of Phosphorylation                                                                                                                                                                                                                       |
| BRCA1         | Akt1       | human    | S694, T509     | S694, T509     | QTSKRHDsDTFPELK,<br>LKRKRRPtsGLHPED | 20085797,              | 10542266                        | breast cancer susceptibility gene product, tumor suppressor; phosphorylation alters<br>function, perhaps by preventing nuclear localization                                                                                                                            |
| BRF1          | Akt1       | human    | S92, S203      | S92, S203      | RFRDRsFsEGGERLL,<br>PRLQHsFsFAGFPSA | 17030608,              | 15538381                        | a CCCH zinc-finger protein that binds to AU-rich elements (ARE) found in the<br>3'-untranslated regions of mRNAs and promotes de-adenylation and rapid degradation<br>by the exosome; phosphorylation results in binding by 14-3-3 protein and inactivation<br>of BRF1 |
| CACNB2        | Akt1       | rat      | S625           | S630           | KQRSRHKsKDRYCDK                     | 15311280               |                                 | voltage-dependent calcium channel; phosphorylation regulates channel trafficking to<br>plasma membrane                                                                                                                                                                 |
| CaRHSP1       | Akt1       | human    | S52            | S52            | tRRtRtFsAtVRASQ                     | 15910284               |                                 | RNA binding protein; phosphorylation effect currently unknown                                                                                                                                                                                                          |
| Casp9         | Akt1       | human    | S196           | S196           | KLRRRFssLHFMVEV                     | 9812896                |                                 | protease, initiates apoptosis; phosphorylation inhibits protease activity                                                                                                                                                                                              |
| CBP           | Akt1       | mouse    | T1872          | T1871          | LMRRRMAtMNTRNVP                     | 17166829               |                                 | acetylates histone and non-histone proteins; phosphorylation increases activity                                                                                                                                                                                        |
| CBY1          | Akt1, Akt2 | human    | S20            | S20            | TPPRKSAsLSNLHsL                     | 18573912               |                                 | an inhibitor of the Wnt signaling pathway; phosphorylation allows 14-3-3 binding and $\beta\text{-}catenin sequestration in the cytoplasm}$                                                                                                                            |
| CCT2          | Akt1       | human    | S260           | S260           | GsRVRVDstAkVAEI                     | 19332537               |                                 | member of the protein chaperone complex; effect of phosphorylation currently unknown                                                                                                                                                                                   |
| CD34          | Akt2       | mouse    | S343           | S346           | yssgpgaspetqgka                     | 21499536               |                                 | a type I transmembrane glycophosphoprotein expressed by hematopoietic stem/progenitor<br>cells, vascular endothelium and some fibroblasts as a negative regulator of cell adhesion;<br>effect of phosphorylation currently unknown                                     |
| Cdc25B        | Akt1       | mouse    | S351           | S353           | VQSKRRKsVtPLEEQ                     | 17554083               |                                 | protein phosphatase responsible for cdc2 activation; phosphorylation promotes activation of M-phase promoting factor                                                                                                                                                   |
| CDK2          | Akt1       | human    | T39            | T39            | LKKIRLDtETEGVPs                     | 18354084               |                                 | cyclin-dependent kinase functioning in S-phase; phosphorylation increases cyclin A<br>binding                                                                                                                                                                          |
| CELF1         | Akt1       | human    | S28            | S28            | GQVPRTWsEKDLREL                     | 18570922               |                                 | RNA-binding protein; phosphorylation enhances interaction with cyclin D1 mRNA                                                                                                                                                                                          |
| CENTB1        | Akt1       | human    | S554           | S554           | SIRPRPGsLRSKPEP                     | 16256741               |                                 | GTPase-activating protein (GAP) for ARF proteins; phosphorylation prevents recycling of<br>b1-integrin containing endosomes and cell migration                                                                                                                         |
| CENTG1        | Akt1       | human    | S985           | S985           | THLSRVRsLDLDDWP                     | 19176382               |                                 | a GTPase activating protein for ARF1 and ARF5; phosphorylation enhances CENTG1 GTP binding and NF-kB activity                                                                                                                                                          |
| CFLAR         | Akt1       | human    | S273           | S273           | LLRDTFTsLGYEVQK                     | 19339247               |                                 | a regulator of apoptosis; phosphorylation targets CFLAR for degradation                                                                                                                                                                                                |
| Chk1          | Akt1       | human    | S280           | S280           | AKRPRVtsGGVsEsP                     | 15107605,              | 12062056                        | DNA damage effector that regulates G2/M transition during DNA damage; phosphorylation<br>inhibits function by preventing phosphorylation by ATM/ATR                                                                                                                    |
| CK1-D         | Akt1       | rat      | S370           | S370           | MERERKVsMRLHRGA                     | 17594292               |                                 | kinase and core component of circadian clock; phosphorylation inhibits kinase activity                                                                                                                                                                                 |
| CLK2          | Akt1       | human    | S34, T127      | S34, T127      | HKRRRSRsWSSSSDR,<br>RRRRRSRtFSRSSSQ | 20682768               |                                 | a dual specificity serine/threonine and tyrosine kinase; phosphorylation increases cell<br>survival after ionizing radiation                                                                                                                                           |
| Cot           | Akt1       | human    | S400           | S400           | EDQPRCQsLDSALLE                     | 12138205               |                                 | oncogene; phosphorylation induces NF-кB-dependent transcription                                                                                                                                                                                                        |
| CREB          | Akt1       | rat      | S133           | S133           | EILsRRPsYRkILND                     | 9829964                |                                 | bZIP transcription factor that activates target genes through cAMP response elements;<br>activated by phosphorylation                                                                                                                                                  |
| CTNNB1        | Akt1, Akt2 | human    | S552           | S552           | QDtQRRtsMGGtQQQ                     | 17287208               |                                 | Wnt signaling pathway protein; phosphorylation causes nuclear localization                                                                                                                                                                                             |
| CTNND2        | Akt1       | mouse    | T454           | T457           | tGTFRtstAPssPGV                     | 17993462               |                                 | transcriptional activator, plays a role in adhesion molecule regulation; phosphorylation<br>promotes binding to p190RhoGEF, dendritic morphogenesis                                                                                                                    |
| Cx43          | Akt1       | rat      | S369           | S369           | RPssRAssRAssRPR                     | 18163231               |                                 | gap junction protein; phosphorylation allows 14-3-3 binding                                                                                                                                                                                                            |
|               | Akt1, Akt3 | rat      | S373           | S373           | RAssRAssRPRPDDL                     | 17008717,              | 18163231                        | gap junction protein; phosphorylation allows 14-3-3 binding                                                                                                                                                                                                            |
| DLC1          | Akt1       | rat      | S330           | S766           | VTRTRSLsTCNKRVG                     | 16338927               |                                 | tumor suppressor and insulin stimulated phosphoprotein, may play role in Glut4 translocation; phosphorylation may inhibit its GAP activity                                                                                                                             |
| DNAJC5        | Akt1       | rat      | S10            | S10            | DQRQRsLsTSGESLY                     | 16243840               |                                 | exocytosis; phosphorylation regulates the kinetics of late stage exocytosis                                                                                                                                                                                            |
| DNMT1         | Akt1       | human    | S143           | S143           | RtPRRsksDGEAkPE                     | 21151116               |                                 | a maintenance methyltransferase, transferring proper methylation patterns to newly<br>synthesized DNA during replication; phosphorylation increases DNMT1 stability and<br>prevents methylation                                                                        |
| EDC3          | Akt1, Akt2 | human    | S161           | S161           | sFRRRHNsWssSsRH                     | 20051463               |                                 | involved in removal of the mRNA 5' cap structure; phosphorylation induces 14-3-3 protein interaction and promotes ED3 mediated post-transcriptional regulation through mRNA                                                                                            |
| EDG-1         | Akt1       | human    | T236           | T236           | RTRSRRLtFRKNISK                     | 11583630               |                                 | G protein-coupled receptor; phosphorylation activates signaling to promote cell migration                                                                                                                                                                              |
| elF4B         | Akt1       | mouse    | S422           | S422           | RERsRtGsEssQtGA                     | 18836482               |                                 | necessary for binding of mRNA to ribosomes; phosphorylation increases transcriptional<br>activity                                                                                                                                                                      |
| ENaC-a        | Akt1       | rat      | S621           | S594           | RFRSRYWsPGRGARG                     | 21220922               |                                 | an amiloride sensitive epithelial sodium channel that mediates sodium reabsorption;<br>phosphorylation increases ENaC specific activity                                                                                                                                |
| eNOS          | Akt1       | human    | S615,<br>S1177 | S615,<br>S1177 | SYKIRFNSISCSDPL,<br>TsRIRtQsFsLQERQ | 12511559,<br>18622039, | 12446767, 10376603,<br>12171920 | enzyme that catalyzes the production of nitric oxide (NO); phosphorylation results in<br>enzyme activation, NO production, and cardiovascular homeostasis (vasodilation, vascular<br>remodeling, angiogenesis)                                                         |
| EphA2         | Akt1       | human    | S897           | S897           | RVsIRLPstsGsEGV                     | 19573808               |                                 | receptor tyrosine kinase that binds to a GPI-anchored ephrin A ligand for regulation of<br>cell adhesion, cell migration, axon guidance, and homeostasis; phosphorylation regulates<br>EphA2 induced cell migration and invasion                                       |
| ER-a          | Akt1, Akt2 | human    | S167           | S167           | GGRERLAsTNDKGSM                     | 11139588,              | 16113102, 11507039              | nuclear receptor and transcription factor; phosphorylation activates the receptor and<br>increases gene expression, causing mammary and uterine cell proliferation                                                                                                     |
|               | Akt1       | human    | S305           | S305           | IkRSkkNsLALSLtA                     | 20101208               |                                 | nuclear receptor and transcription factor; phosphorylation activates the receptor and<br>increases gene expression, causing mammary and uterine cell proliferation                                                                                                     |
| ER-β          | Akt1       | mouse    | S236           | D236           | VRRQRSAsEQVHCLN                     | 17166829               |                                 | nuclear receptor and transcription factor; phosphorylation prevents cofactor binding<br>and decreases activity                                                                                                                                                         |
| EZH2          | Akt1       | human    | S21            | S21            | CWRKRVKsEYMRLRQ                     | 16224021               |                                 | methyltransferase; phosphorylation decreases histone H3 methylation of Lys27 and increases gene expression                                                                                                                                                             |
|               |            |          |                |                |                                     |                        |                                 |                                                                                                                                                                                                                                                                        |

-----> Direct Stimulatory Modification

----- Direct Inhibitory Modification

→ → Multistep Stimulatory Modification — → Tentative Stimulatory Modification 

Transcriptional Stimulation

Transcriptional Inhibition

![](_page_17_Picture_8.jpeg)

Joining of Subunits ----> Translocation Separation of Subunits or Cleavage Products

| Akt Substrate    | es Table           |                |                     |                     |                                                         | -                                                            |                                                                                                                                                                                                     |
|------------------|--------------------|----------------|---------------------|---------------------|---------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Substrate        | Isoform            | Organism       | Site                | Human Site          | Sequence (+/-7)                                         | PMID                                                         | Substrate Function and Effect of Phosphorylation                                                                                                                                                    |
| ezrin            | Akt2               | human          | T567                | T567                | QGRDKYKtLRQIRQG                                         | 15531580                                                     | plasma membrane/cytoskeletal linker protein; phosphorylation promotes actin binding and cytoskeletal organization                                                                                   |
| FANCA            | Akt1               | human          | S1149               | S1149               | CLRSRDPsLMVDFIL                                         | 11855836                                                     | ATPase involved in DNA repair; phosphorylation is negatively regulated by Akt                                                                                                                       |
| FLEG1            | Akt1               | human          | S486                | S486                | GLEtRRLsLPSsKAK                                         | 17256767                                                     | a chaperone protein involved in directing specific histones to the centromere;<br>phosphorylation allows binding to 14-3-3                                                                          |
| FLNC             | Akt1, Akt2         | human          | S2233               | S2233               | LGRERLGsFGsltRQ                                         | 15461588                                                     | muscle-specific filamin functioning in muscle cells; phosphorylation effect currently<br>unknown                                                                                                    |
| FOXA2            | Akt1               | human          | T156                | T156                | KTYRRSYtHAKPPYS                                         | 14500912                                                     | transcription factor involved in embryonic development and differentiation;<br>phosphorylation results in nuclear exclusion and inhibition of FoxA2-dependent<br>transcriptional activity           |
| FOXG1            | Akt1               | human          | T279                | T279                | KLRRRSttsRAKLAF                                         | 17435750                                                     | transcriptional repression factor involved in brain development; phosphorylation promotes nuclear export                                                                                            |
| FOX01A           | Akt1               | human          | S256,<br>S319, T24  | S256, S319,<br>T24  | sPrRrAAsMDNNSkF,<br>TFRPRtssNAsTIsG,<br>LPRPRSCtWPLPRPE | 15668399, 10358075, 11237865,<br>16076959, 11311120          | transcription factor involved in cell cycle arrest, apoptosis, and glucose metabolism;<br>phosphorylation causes export from the nucleus and inhibits activity                                      |
| F0X03A           | Akt1               | human          | S253, T32           | S253, T32           | APRRRAVsMDNSNKY,<br>QSRPRsCtWPLQRPE                     | 10910908, 10995739, 10102273,<br>11154281                    | transcription factor involved in cell cycle arrest and apoptosis; phosphorylation causes<br>export from the nucleus and inhibits activity                                                           |
| F0X04            | Akt1               | human          | S197,<br>S262, T32  | S197, S262,<br>T32  | APRRRAAsMDSSSKL,<br>TFRPRSssNASSVST,<br>QSRPRsCtWPLPRPE | 11313479, 11313479, 10217147,<br>16272144                    | transcription factor involved in cell cycle arrest, apoptosis, and insulin signaling;<br>phosphorylation causes export from the nucleus and inhibits activity                                       |
| Gab2             | Akt1               | human          | S159                | S159                | LLRERKSsAPSHsSQ                                         | 11782427                                                     | docking/scaffolding protein, proto-oncogene, RTK signaling intermediate; phosphorylation inhibits activity                                                                                          |
| GABRB2           | Akt1               | rat            | S434                | S434                | SRLRRRAsQLKITIP                                         | 12818177                                                     | receptor that mediates fast inhibitory synaptic transmission in the brain; phosphorylation increases the number of receptors on the cell surface                                                    |
| GAPDH            | Akt2               | human          | T237                | T237                | GMAFRVPtANVSVVD                                         | 21979951                                                     | catalyzes the phosphorylation of glyceraldehyde-3-phosphate during glycolysis;<br>phosphorylation decreases nuclear translocation and GAPDH induced apoptosis                                       |
| GATA1            | Akt1               | human          | S310                | S310                | QTRNRKAsGkGkkkR                                         | 16107690                                                     | transcription factor; phosphorylation increases activity and promotes blood cell differentiation                                                                                                    |
| GATA2            | Akt1               | human          | S401                | S401                | QTRNRKMsNKSKKSK                                         | 15837948                                                     | transcription factor; phosphorylation inhibits activity to promote adipogenesis and reduce inflammation                                                                                             |
| girdin<br>GOLGA3 | Akt1<br>Akt1       | human<br>mouse | S1417<br>S174, S385 | S1417<br>S174, S389 | INRERQKsLtLTPTR<br>VKRHRERsSQPAtKM,<br>EVRsRRDsICsSVSM  | 16139227<br>17888676                                         | actin binding protein; phosphorylation promotes cell migration<br>golgi auto-antigen; phosphorylation results in reduced apoptosis                                                                  |
| Grb10            | Akt1               | mouse          | S455                | S428                | NAPMRsVsENsLVAM                                         | 15722337                                                     | an adaptor protein that interacts with many receptor tyrosine kinases as well as<br>downstream signal molecules; phosphorylation allows binding to 14-3-3                                           |
| GSK3a            | Akt1               | human          | S21                 | S21                 | SGRARtssFAEPGGG                                         | 11340086, 11563975, 11577096                                 | serine/threonine protein kinase that phosphorylates and inactivates glycogen synthase;<br>phosphorylation inhibits activity                                                                         |
| GSK3β            | Akt1               | human          | S9                  | S9                  | SGRPRttsFAESCKP                                         | 12900420, 15457186, 11563975,<br>11340086, 11577096, 8985174 | serine/threonine protein kinase that phosphorylates and inactivates glycogen synthase; phosphorylation inhibits activity                                                                            |
| H2B              | Akt1               | human          | S37                 | S37                 | RKRsRkEsyslyVyk                                         | 8985174                                                      | core component of the nucleosome; phosphorylation effect currently unknown                                                                                                                          |
| H3               | Akt1               | mouse          | S10                 | S10                 | tKQTARksTGGkAPR                                         | 12529330                                                     | core component of the nucleosome; phosphorylation is correlated with chromosome<br>condensation during mitosis and meiosis                                                                          |
| HM0X1            | Akt1               | human          | S188                | S188                | LYRSRMNsLEMtPAV                                         | 15581622                                                     | heme oxygenase involved in stress response; phosphorylation regulates binding affinity                                                                                                              |
| hnRNP A1         | Akt1               | human          | S199                | S199                | sQrGrsGsGNFGGGr                                         | 18562319                                                     | involved in pre-mRNA packaging into hnRNP particles and transport of poly(A) mRNA from cytoplasm to nucleus; phosphorylation regulates role in cyclin D1 and c-Myc IRES activity                    |
| hnRNP E1         | Akt1, Akt2         | mouse          | S43                 | S43                 | VKRIREEsGARINIS                                         | 20154680                                                     | binds to single-stranded nucleic acid; phosphorylation results in disruption of BAT element<br>binding and translational activation of Dab2 and ILEI mRNA                                           |
| HSP27            | Akt1               | human          | S82                 | S82                 | RALsRQLssGVSEIR                                         | 12740362                                                     | heat shock protein that confers cellular resistance to stress and adverse environmental<br>change; phosphorylation alters tertiary structure, modulates actin polymerization, and<br>reorganization |
| HTRA2            | Akt1, Akt2         | human          | S212                | S212                | RVRVRLLsGDTYEAV                                         | 17311912                                                     | protease released during apoptosis; phosphorylation inhibits activity and attenuates its pro-apoptotic function                                                                                     |
| Huntingtin       | Akt1               | human          | S421                | S421                | GGRsRsGsIVELIAG                                         | 12062094, 14725621, 15843398,<br>16452687                    | Huntington's disease; Akt phosphorylation blocks nuclear aggregation and provides neuroprotection                                                                                                   |
| ΙΚΚ-α            | Akt1, Akt2         | human          | T23                 | T23                 | EMRERLGtGGFGNVC                                         | 18515365, 12048203, 10485710,<br>19609947                    | NF-kB signaling intermediate; phosphorylation activates NF-kB and immune/stress response                                                                                                            |
| IP3R1            | Akt1               | rat            | S2682               | S2690               | FPRMRAMsLVSSDSE                                         | 16332683                                                     | $\mbox{Ca}^{2*}$ release and signaling; phosphorylation induces resistance to apoptosis, possibly through caspase-3 inactivation                                                                    |
| IRAK1            | Akt1               | human          | T100                | T100                | LRARDIItAWHPPAP                                         | 11976320                                                     | a serine/threonine-specific IL-1 receptor-associated kinase involved in Toll signaling;<br>phosphorylation inhibits IRAK mediated NK-κB activation                                                  |
| IRS1             | Akt1               | human          | S629                | S629                | VPSGRKGsGDyMPMs                                         | 17640984                                                     | insulin receptor signaling intermediate; phosphorylation inhibits function                                                                                                                          |
| KHSRP            | Akt1<br>Akt1, Akt2 | rat<br>human   | S522<br>S193        | S527<br>S193        | RFRKRTHsAGTSPTI<br>GLPERSVsLTGAPES                      | 17579213           17177604                                  | insulin receptor signaling intermediate; phosphorylation inhibits function<br>recruits degradation machinery, activates mRNA turnover, regulates splicing;                                          |
| Kv11.1 iso5      | Akt1               | human          | T897                | T897                | SFRRRtDtDtEQPGE                                         | 18791070                                                     | pnospnorylation inhibits RNA turnover by degradation<br>pore-forming subunit of voltage-gated potassium channels, essential for rhythmic                                                            |
| Jamin A/C        | Λ <i>ld</i> 1      | rot            | \$201 0404          | S201 C404           | DEDEDAGALEGOOOD                                         | 10000171                                                     | excitability of Carolac muscle and endocrine cells; phosphorylation innibits channels                                                                                                               |
| LTB4R2           | Akt1               | human          | T355                | T355                | GGRsREGtMELRTTP                                         | 22044535                                                     | a low-affinity leukotriene receptor involved in chemotaxis; phosphorylation regulates activation of chemotactic responses                                                                           |
|                  |                    |                |                     |                     |                                                         |                                                              |                                                                                                                                                                                                     |

Kinase Phosphatase

![](_page_18_Figure_3.jpeg)

![](_page_18_Picture_6.jpeg)

![](_page_18_Picture_7.jpeg)

![](_page_18_Picture_8.jpeg)

![](_page_18_Picture_9.jpeg)

| Akt Substrat | es Table | 1        |                        |                     |                                                         |                                                                          |                                                                                                                                                                                                                                                                    |
|--------------|----------|----------|------------------------|---------------------|---------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Substrate    | Isoform  | Organism | Site                   | Human Site          | Sequence (+/-7)                                         | PMID                                                                     | Substrate Function and Effect of Phosphorylation                                                                                                                                                                                                                   |
| Mad1         | Akt1     | human    | S145                   | S145                | IERIRMDsIGSTVSS                                         | 18451027, 19526459                                                       | component of spindle-assembly checkpoint; phosphorylation results in ubiquitination and degradation through 26S proteasome pathway                                                                                                                                 |
| MDM2         | Akt1     | human    | S166,<br>S186,<br>S188 | S166, S186,<br>S188 | SSRRRAISETEENSD,<br>RQRKRHKSDSISLSF,<br>RKRHKSDSISLSFDE | 11715018, 15169778, 11504915<br>11850850, 11923280, 15527798<br>11960368 | <ul> <li>ubiquitin ligase involved in p53 degradation; phosphorylation results in translocation to</li> <li>the nucleus and inhibition of p53</li> </ul>                                                                                                           |
| MDM4         | Akt1     | human    | S367                   | S367                | PDCRRtIsAPVVRPK                                         | 18356162                                                                 | RING-finger domain protein involved in p53 degradation and apoptosis; phosphorylation<br>stabilizes MDM4 and MDM2                                                                                                                                                  |
| METTL1       | Akt1     | human    | S27                    | S27                 | yYRQrAHsNPMADHT                                         | 15861136                                                                 | catalyzes the formation of m7G46 in tRNA; phosphorylation results in inactivation                                                                                                                                                                                  |
| MKK4         | Akt1     | human    | S80                    | S80                 | IERLRtHsIEsSGKL                                         | 15911620, 11707464                                                       | signaling intermediate of the JNK/SAPK pathway involved in stress/inflammation;<br>phosphorylation inhibits activity                                                                                                                                               |
| MLK3         | Akt1     | human    | S674                   | S674                | PGRERGEsPTtPPTP                                         | 12458207                                                                 | JNK-mediated neuronal cell death; phosphorylation inhibits activity                                                                                                                                                                                                |
| MST1         | Akt1     | human    | T120                   | T120                | IIRLRNktLTEDEIA                                         | 19940129                                                                 | pro-apoptotic kinase; phosphorylation inhibits kinase activity and nuclear translocation<br>resulting in inhibition of pro-apoptotic signaling                                                                                                                     |
| MST2         | Akt1     | human    | T117, T384             | T117, T384          | IIRLRNktLIEDEIA,<br>GTMKRNAtsPQVQRP                     | 20231902, 20086174                                                       | upstream activator of the MAPK pathway that regulates apoptosis, morphogenesis,<br>and cytoskeletal rearrangements; phosphorylation inhibits pro-apoptotic activity                                                                                                |
| mTOR         | Akt1     | human    | T2446,<br>S2448        | T2446,<br>S2448     | RsRtRtDsysAGQsV                                         | 15208671, 10910062, 10567225                                             | protein synthesis and cell growth; phosphorylation increases activity                                                                                                                                                                                              |
| MY05A        | Akt2     | mouse    | S1650                  | S1652               | GLRKRtssIADEGty                                         | 17515613                                                                 | actin-based motor protein with a role in cytoplasmic vesicle transport and anchorage;<br>phosphorylation promotes insulin-mediated Glut4 vesicle translocation                                                                                                     |
| Myt1         | Akt1     | starfish | S75                    | S83                 | ESRPRAVsFRQSEPS                                         | 11802161                                                                 | Wee1 family member and cell cycle regulator; phosphorylation downregulates Myt1<br>and initiates M-phase                                                                                                                                                           |
| NDRG2        | Akt1     | human    | S332, T348             | S332, T348          | LsRsRtAsLtsAAsV,<br>GNRsRsRtLsQssEs                     | 15461589                                                                 | insulin-stimulated phosphoprotein; phosphorylation promotes insulin signaling                                                                                                                                                                                      |
| NFAT90       | Akt1     | human    | S647                   | S647                | rGrGRGGsIRGRGRG                                         | 18097023, 20870937                                                       | translation inhibitory protein; phosphorylation required for nuclear export                                                                                                                                                                                        |
| NHE1         | Akt1     | human    | S648,<br>S703,<br>S796 | S648, S703,<br>S796 | KTRQRLRSyNRHTLV,<br>MsRARIGSDPLAyEP,<br>QRIQRCLSDPGPHPE | 18757828, 20026127                                                       | sodium/hydrogen exchanger involved in pH regulation and signal transduction; phosphorylation inhibits activity                                                                                                                                                     |
| NMDAR2C      | Akt1     | mouse    | S1084                  | S1081               | GPRPRHAsLPSSVAE                                         | 19477150                                                                 | Glutamate receptor channel subunit; phosphorylation promotes binding to 14-3-3e and leads to increased surface expression of cerebellar NMDA receptors                                                                                                             |
| -            | Akt1     | rat      | S1083                  | S1081               | GPRPRHAsLPSSVAE                                         | 19477150                                                                 | Glutamate receptor channel subunit; phosphorylation promotes binding to 14-3-3e and leads to increased surface expression of cerebellar NMDA receptors                                                                                                             |
| NuaK1        | Akt1     | human    | S600                   | S600                | PARQRIRsCVSAENF                                         | 15060171, 12409306                                                       | AMPK family member activated under glucose starvation that mediates cell survival; phosphorylation increases kinase activity                                                                                                                                       |
| Nur77        | Akt1     | human    | S351                   | S351                | GRRGRLPsKPKQPPD                                         | 16434970, 11274386                                                       | a nuclear receptor and transcription factor regulating T cell apoptosis; phosphorylation inhibits transcriptional activity                                                                                                                                         |
| p21Cip1      | Akt1     | human    | S146, T145             | S146, T145          | GRkRRQtsMTDFYHs,<br>QGRkRRQtsMTDFYH                     | 17855660, 11231573, 11756412<br>15173090, 11463845, 11698269             | eregulates cell cycle and cell survival; phosphorylation increases protein stability                                                                                                                                                                               |
| p27Kip1      | Akt1     | human    | S10, T157,<br>T198     | S10, T157,<br>T198  | NVRVsNGsPsLErMD,<br>GIRkrPAtDDSSTQN,<br>PGLRRRQt        | 18710949, 12042314, 12244302                                             | 2 a cyclin-dependent kinase inhibitor that enforces the G1 cell cycle restriction point;<br>phosphorylation promotes 14-3-3 binding and cytoplasmic localization                                                                                                   |
| p300         | Akt1     | human    | S1834                  | S1834               | MLRRRMAsMQRTGVV                                         | 16024795, 11116148                                                       | transcriptional co-activator; phosphorylation can either activate or suppress transcriptional activity depending on cell type and physiological stimuli                                                                                                            |
| p47phox      | Akt1     | human    | S304, S328             | S304, S328          | GAPPRRssirnahsi,<br>QDAYRRNsVRFLQQR                     | 12734380                                                                 | a component of the phagocytic NADPH oxidase multiprotein enzyme that catalyzes the<br>reduction of oxygen to superoxide in response to pathogenic invasion; phosphorylation<br>regulates p47hox respiratory burst activity                                         |
| PAK1         | Akt1     | mouse    | S21                    | S21                 | APPMRNTsTMIGAGS                                         | 14585966                                                                 | a p21-activated kinase engaged in cytoskeletal reorganization, MAPK signaling, apoptotic<br>signaling, control of phagocyte NADPH oxidase, and growth factor-induced neurite<br>outgrowth; phosphorylation at Ser21 regulates binding with the adaptor protein Nck |
| palladin     | Akt1     | human    | S1118                  | S1118               | VRRPRsRsRDsGDEN                                         | 20471940                                                                 | actin-bundling protein; phosphorylation promotes F-actin bundling and inhibits cell<br>migration                                                                                                                                                                   |
| PAR-4        | Akt1     | rat      | S249                   | N257                | SRHNRDTsAPANFAS                                         | 16209943                                                                 | a pro-apoptotic factor that activates the Fas-FADD-caspase-8 pathway as well as<br>inhibits the NF-kB pro-survival pathway; phosphorylation prevents nuclear translocation,<br>promoting cell survival                                                             |
| PDCD4        | Akt1     | human    | S67, S457              | S67, S457           | kRRLRKNssRDsGRG,<br>RGRKRFVsEGDGGRL                     | 16357133                                                                 | tumor suppressor protein that is strongly induced during apoptosis; phosphorylation inhibits tumor suppressor function                                                                                                                                             |
| PDE3A        | Akt1     | mouse    | S290,<br>S291,<br>S292 | S290, S291,<br>S292 | GWKRRRRsssVVAGE,<br>WKRRRRsssVVAGEM,<br>KRRRRsssVVAGEMS | 17124499                                                                 | regulates levels of cAMP and cGMP, insulin-dependent oocyte maturation;<br>phosphorylation increases activity                                                                                                                                                      |
| PDE3B        | Akt1     | mouse    | S273                   | S295                | VIRPRRRssCVsLGE                                         | 10454575                                                                 | regulates levels of cAMP and cGMP, activated by insulin to regulate lipolysis;<br>phosphorylation increases activity                                                                                                                                               |
| PEA-15       | Akt1     | human    | S116                   | S116                | KDIIRQPsEEEIIKL                                         | 12808093                                                                 | a phosphoprotein shown to coordinate cell growth, death, and glucose utilization;<br>phosphorylation mediates binding to FADD or Erk and further regulates the Erk and<br>apoptosis signaling pathways                                                             |
| peripherin   | Akt1     | mouse    | S66                    | S59                 | SSSARLGsFRAPRAG                                         | 17569669                                                                 | neuronal intermediate filament protein; phosphorylation promotes motor nerve<br>regeneration                                                                                                                                                                       |
| PFKFB2       | Akt1     | human    | S466, S483             | S466, S483          | PVRMRRNsFtPLSSS,<br>IRRPRNysVGSRPLK                     | 12853467                                                                 | glycolytic enzyme, insulin-mediated glucose metabolism; phosphorylation increases activity                                                                                                                                                                         |
| PFKFB3       | Akt1     | human    | S461                   | S461                | NPLMRRNsVtPLAsP                                         | 15896703                                                                 | synthesis and degradation of fructose 2,6-bisphosphate; phosphorylation decreases sensitivity to inhibition                                                                                                                                                        |

-----> Direct Stimulatory Modification ----- Direct Inhibitory Modification

→ → Multistep Stimulatory Modification — → Tentative Stimulatory Modification

Transcriptional Stimulation Transcriptional Inhibition

![](_page_19_Picture_6.jpeg)

Joining of Subunits ----> Translocation Separation of Subunits or Cleavage Products

| Akt Substrat | es Table   |          |            |            |                                     |                              |                                                                                                                                                                                                                               |
|--------------|------------|----------|------------|------------|-------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Substrate    | Isoform    | Organism | Site       | Human Site | Sequence (+/-7)                     | PMID                         | Substrate Function and Effect of Phosphorylation                                                                                                                                                                              |
| PGC-1 a      | Akt1, Akt2 | mouse    | S570       | S571       | RMRSRsRsFsRHRSC                     | 17554339                     | regulates gluconeogenesis and fatty acid oxidation; phosphorylation inhibits function                                                                                                                                         |
| PIP5K        | Akt1       | human    | S307       | S307       | PARNRsAsItNLsLD                     | 15546921                     | a protein/ lipid kinase involved in membrane trafficking; phosphorylated in response to<br>insulin                                                                                                                            |
|              | Akt1       | mouse    | S105       | S105       | EELHRRSsVLENTLP                     | 20513353                     | a protein/ lipid kinase involved in membrane trafficking; phosphorylated in response to<br>insulin                                                                                                                            |
| PLB          | Akt1       | rat      | S16        | S16        | RSAIRRAstIEMPQQ                     | 18838385                     | a major phosphoprotein calcium regulation component of the sarcoplasmic reticulum;<br>phosphorylation causes release of inhibition and increases calcium uptake by the<br>sarcoplasmic reticulum                              |
| PLCG1        | Akt1       | human    | S1248      | S1248      | HGRAREGsFEsRyQQ                     | 16525023                     | catalyzes PI 4,5 bisphosphate to IP <sub>3</sub> and DAG, increases intracellular Ca <sup>2+</sup> levels;<br>phosphorylation increases activity and enhances EGF-stimulated cell motility                                    |
| PPP1CA       | Akt1       | human    | T320       | T320       | NPGGRPItPPRNSAK                     | 14633703                     | a serine/threonine phosphatase involved in cell cycle regulation; phosphorylation inhibits activity                                                                                                                           |
| PRAS40       | Akt1       | human    | T246       | T246       | LPRPRLNtsDFQKLK                     | 12524439, 17277771, 18372248 | binds to and inhibits mTOR; phosphorylation causes 14-3-3 binding/inhibition and results<br>in increased protein synthesis                                                                                                    |
| PRPF19       | Akt1       | human    | T193       | T193       | ERKKRGKtVPEELVK                     | 20629186                     | a member of the splicesome that also functions in DNA double strand break repair;<br>phosphorylation allows 14-3-3 binding                                                                                                    |
| PRPK         | Akt1       | human    | S250       | S250       | RLRGRKRsMVG                         | 17712528                     | $\ensuremath{\text{p53}}$ binding protein and kinase; phosphorylation causes activation and results in $\ensuremath{\text{p53}}$ phosphorylation                                                                              |
| PTP1B        | Akt1       | human    | S50        | S50        | RNRyRDVsPFDHsRI                     | 11579209                     | protein tyrosine phosphatase that dephosphorylates the insulin receptor; phosphorylation inhibits activity                                                                                                                    |
| QIK          | Akt2       | mouse    | S358       | S358       | DGRQRRPstIAEQTV                     | 17805301                     | AMPK related protein; phosphorylation leads to kinase activation and promotes<br>ubiquitination/degradation of TORC2                                                                                                          |
| Rac1         | Akt1       | human    | S71        | S71        | yDRLRPLsYPQTDVF                     | 10617634                     | Rho-GTPase, actin cytoskeletal organization; phosphorylation inhibits GTP-binding activity                                                                                                                                    |
| Raf1         | Akt1       | mouse    | S259       | S259       | SQRQRStsTPNVHMV                     | 12087097, 12087097           | signaling intermediate in Erk1/2 pathway; phosphorylation inhibits activity                                                                                                                                                   |
| _            | Akt1       | rat      | S259       | S259       | SQRQRSTsTPNVHMV                     | 11443134                     | signaling intermediate in Erk1/2 pathway; phosphorylation inhibits activity                                                                                                                                                   |
| RANBP3       | Akt1       | human    | S126       | S126       | VKRERtssLtQFPPs                     | 18280241                     | RAN binding protein 3 functions in nuclear transport; phosphorylation mediates Ran<br>binding and regulates nuclear transport                                                                                                 |
| RARA         | Akt1       | human    | S96        | S96        | FVCQDKSsGYHYGVS                     | 16417524                     | nuclear receptor for retinoic acid that acts as a direct regulator of gene expression,<br>phosphorylation of the DNA binding domain inhibits RARA activity                                                                    |
| RGC32        | Akt1       | human    | S65        | S65        | ERMKRRSsAsVSDSS                     | 19162005                     | a regulator of cell cycle-specific kinases in response to DNA damage; phosphorylation<br>leads to activation and regulation of growth factors                                                                                 |
| RNF11        | Akt1       | human    | T135       | T135       | DWLMRSFtCPSCMEP                     | 16123141                     | a member of a ubiquitin editing complex that modulates transient inflammatory signaling;<br>phosphorylation allows 14-3-3 binding                                                                                             |
| Ron          | Akt1       | human    | S1394      | S1394      | VRRPRPLsEPPRPT_                     | 12919677, 14505491           | receptor tyrosine kinase for macrophage stimulating protein (MSP), cell adhesion,<br>proliferation and migration; phosphorylation causes 14-3-3 binding                                                                       |
| RPS3         | Akt1       | human    | T70        | T70        | GrrireltavvQkRF                     | 20605787                     | a member of the 40S ribosomal subunit that also induces neuronal apoptosis and acts<br>as an endonuclease; phosphorylation inhibits proapoptotic function, increases nuclear<br>import/accumulation, and increases DNA repair |
| S6           | Akt1       | mouse    | S236       | S236       | AKRRRLssLRAstsK                     | 12151408                     | S6 ribosomal protein; phosphorylation activates the protein and promotes protein<br>synthesis                                                                                                                                 |
|              | Akt1, Akt2 | rat      | S235, S236 | S235, S236 | IAKRRRLssLRAsts,<br>AKRRRLssLRAstsK | 15358595                     | S6 ribosomal protein; phosphorylation activates the protein and promotes protein<br>synthesis                                                                                                                                 |
| SFRS5        | Akt2       | rat      | S86        | S86        | GRGRGRYsDRFSSRR                     | 15684423                     | a member of the splicesome involved in constitutive and alternative splicing;<br>phosphorylation activates alternative splicing exon inclusion                                                                                |
| SH3BP4       | Akt1       | mouse    | S245       | S246       | FRSKRSysLsELsVL                     | 19122209                     | controls selective internalization of the transferrin receptor through endocytosis;<br>phosphorylation promotes 14-3-3 binding at the plasma membrane                                                                         |
| SH3RF1       | Akt1, Akt2 | human    | S304       | S304       | KNTKKRHSFtsLTMA                     | 17535800                     | scatfolding protein that binds to activated Rac and promotes apoptosis via JNK activation;<br>phosphorylation reduces ability to bind Rac, promoting apoptosis                                                                |
| SKI          | Akt1       | human    | 1458       | 1458       | QPRKRKLtVDTPGAP                     | 19875456                     | negative regulator of IGI-B signaling by binding to Smads; phosphorylation causes its<br>destabilization and reduces SKI-mediated inhibition of expression of Smad7                                                           |
| SOX2         | Akt1       | mouse    | 1118       | 1116       | KYRPRRKtk1LMkKD                     | 20945330                     | a transcription factor required for early embryogenesis and embryonic stem cell<br>pluripotency; phosphorylation stabilizes SOX2, increasing transcriptional activity                                                         |
| SRPK2        | Akt1       | human    | 1492       | 1492       | PSHDRSRtVsAsstG                     | 19592491                     | a protein kinase targeting the serine/arginine family of splicing factors; phosphorylation<br>causes nuclear translocation and upregulation of targets regulating cell cycle progression<br>and apoptosis                     |
| SSB          | Akt1       | mouse    | T301       | T302       | LLRNKKVtWKVLEGH                     | 18836485                     | RNA binding protein, plays a role in processing of RNA polymerase III transcripts;<br>phosphorylation promotes export to cytoplasm where it binds polysomes and regulates<br>expression of a specific set of mRNAs            |
| STXBP4       | Akt2       | mouse    | S99        | S99        | RAKLRsEsPWEIAFI                     | 15753124                     | inhibits formation and translocation of intracellular vesicles; insulin-stimulated<br>phosphorylation of STXBP4 releases inhibition                                                                                           |
| SYTL1        | Akt1       | human    | S241       | S241       | RMLSSSSsVSSLNSS                     | 15998322                     | a secretory factor family member that is involved in granule exocytosis; phosphorylation regulates SYTL1 subnuclear localization                                                                                              |
| TAL1         | Akt1       | human    | Т90        | T90        | EARHRVPttELCRPP                     | 15930267, 19406989           | transcription factor; phosphorylation inhibits transcriptional repressor activity and regulates intracellular localization                                                                                                    |
| TBC1D1       | Akt1       | human    | T596       | T596       | AFRRRANtLSHFPIE                     | 17995453                     | Rab GTPase-activating protein involved in insulin-stimulated Glut4 trafficking;<br>phosphorylation promotes glucose transport                                                                                                 |
| TERT         | Akt1       | human    | S227, S824 | S227, S824 | GARRRGGsASRSLPL,<br>AVRIRGKsYVQCQGI | 10224060                     | telomerase reverse transcriptase, chromosome length maintenance; phosphorylation<br>enhances telomerase activity                                                                                                              |

Kinase Phosphatase Transcription Factor

![](_page_20_Picture_4.jpeg)

![](_page_20_Picture_6.jpeg)

GAP/GEF GAP/GEF

![](_page_20_Picture_8.jpeg)

![](_page_20_Picture_9.jpeg)

| Akt Substrates Table |  |
|----------------------|--|
|                      |  |

| Substrate | Isoform    | Organism | Site                    | Human Site           | Sequence (+/-7)                                         | PMID                         | Substrate Function and Effect of Phosphorylation                                                                                                                                                                                |
|-----------|------------|----------|-------------------------|----------------------|---------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THOC4     | Akt1       | human    | S34, T219               | S34, T219            | RGRGRAGsQGGrGGG,<br>GGGtrRGtRGGARGR                     | 18562279                     | an RNA binding and export protein that also acts as a chaperone for dimerization of<br>transcription factors; phosphorylation regulates THOC4 subnuclear localization and<br>activates mRNA export and cell proliferation       |
| TOPBP1    | Akt1       | human    | S1159                   | S1159                | EERARLAsNLQWPSC                                         | 19477925                     | induces a large increase in the kinase activity of ATR; phosphorylation prevents the<br>enhanced association of ATR with TopBP1 after DNA damage                                                                                |
| TRF1      | Akt1       | human    | T273                    | T273                 | SKRTRTItSQDKPSG                                         | 19160102                     | controls telomere structure; phosphorylation decreases telomere length                                                                                                                                                          |
| TSC2      | Akt1       | human    | S939,<br>S981,<br>T1462 | S939, S981,<br>T1462 | sFRARstsLNERPKs,<br>AFRCRSIsVSEHVVR,<br>GLRPRGytIsDSAPs | 15342917, 12150915, 16636147 | tumor suppressor that inhibits mTOR; phosphorylation inhibits function and allows protein synthesis to occur                                                                                                                    |
| _         | Akt1       | rat      | S1130,<br>S1132         | S1130,<br>S1132      | GARDRVRsMsGGHGL,<br>RDRVRsMsGGHGLRV                     | 12172553                     | tumor suppressor that inhibits mTOR; phosphorylation inhibits function and allows protein synthesis to occur                                                                                                                    |
| TTC3      | Akt1       | human    | S378                    | S378                 | AYTPRsLsAPIFTTS                                         | 20059950                     | E3 ligase to Akt; phosphorylation promotes TTC3 function, such as ability to ubiquitinylate and destabilize Akt                                                                                                                 |
| TWIST1    | Akt1       | human    | S42, S123               | S42, S123            | GGRKRRSsRRSAGGG,<br>RERQRTQsLNEAFAA                     | 20400976                     | a regulatory basic helix-loop-helix anti-apoptotic transcription factor; phosphorylation<br>activates TWIST1, causing inhibition of p53 and promotion of cell survival                                                          |
| USP8      | Akt1       | mouse    | T907                    | T945                 | TCRRRSRtFEAFMYL                                         | 17210635                     | deubiquitinating enzyme that plays a role in growth factor receptor trafficking and<br>degradation; phosphorylation increases protein stability                                                                                 |
| VCP       | Akt1       | human    | S352,<br>S746,<br>S748  | S352, S746,<br>S748  | AAtNRPNsIDPALRR,<br>AMRFARRsVsDNDIR,<br>RFARRsVsDNDIRky | 16551632, 16027165           | ATPase and molecular chaperone; phosphorylation may impair its pro-apoptotic effects<br>and promote cell survival                                                                                                               |
| Vimentin  | Akt1       | human    | S39                     | S39                  | ttsTrtysLGsALRP                                         | 20856200                     | a cytoskeletal intermediate filament protein; phosphorylation induces cellular motility and<br>invasion by protection from proteolysis                                                                                          |
| Wee1      | Akt1       | human    | S642                    | S642                 | KKMNRsVsLTIy                                            | 15964826                     | a protein kinase that inhibits cell cycle progression by phosphorylation inhibition of<br>cdc2 kinase; phosphorylation promotes a change in Wee1 localization from nuclear to<br>cytoplasmic and is associated with G2/M arrest |
| WNK1      | Akt1       | human    | T60                     | T60                  | EYRRRRHtMDKDSRG                                         | 14611643, 16081417           | regulates ion channels; phosphorylation of WNK1 causes SGK1 activation and regulation<br>of sodium ion transport                                                                                                                |
| XIAP      | Akt1, Akt2 | human    | S87                     | S87                  | VGRHRKVsPNCRFIN                                         | 14645242, 17537996           | inhibitor of apoptosis; phosphorylation prevents ubiquitination/degradation and causes<br>increased cell survival                                                                                                               |
| YAP1      | Akt1       | human    | S127                    | S127                 | PQHVRAHssPAsLQL                                         | 12535517                     | a transcriptional co-activator of PEBP2 and other transcription factors; phosphorylation<br>suppresses p73-mediated apoptosis                                                                                                   |
| YB-1      | Akt1       | human    | S102                    | S102                 | NPRKyLRsVGDGEtV                                         | 22417301                     | a transcription/translation factor involved in mRNA stability and expression;<br>phosphorylation induces activation and translocation to the nucleus                                                                            |
| zyxin     | Akt1       | human    | S142                    | S142                 | PQPREKVssIDLEId                                         | 17572661                     | a focal adhesion molecule that moves between the cytoplasm and nucleus;<br>phosphorylation promotes an association with acinus and anti-apoptotic activity                                                                      |

## **Akt Binding Partners**

The Akt Binding Partners Table outlines Akt binding proteins, along with the effect of this interaction on Akt activity and corresponding references.

| Diadian Devices        | Countes Arc binding proteins, along with the effect of this interaction on Art activity and correspo                                        |                        | © 2005–2013 Cell Signaling Technology, Inc                                                                                          |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Binding Partner        | Effect of Binaing                                                                                                                           | Effect on Akt Activity |                                                                                                                                     |
| a-Actinin 4            | Essential role in Akt translocation and activation                                                                                          | Positive               | Ding, Z. et al. (2006) <i>Proc. Natl. Acad. Sci. USA</i> 103, 15014–15019.                                                          |
| Androgen Receptor (AR) | Forms complex with Akt and Mdm2 which results in AR degradation                                                                             | N/A                    | Lin, H.K. et al. (2002) <i>EMBO J.</i> 21, 4037–4048.                                                                               |
| APE                    | Associates with the kinase domain of Akt                                                                                                    | Positive               | Anai, M. et al. (2005) <i>J. Biol. Chem.</i> 280, 18525–18535.                                                                      |
| APPL1                  | Associates with the kinase domain of Akt                                                                                                    | Positive               | Mitsuuchi, Y. et al. (1999) Oncogene 18, 4891–4898.                                                                                 |
| Brk                    | Binds to Akt and limits its activity                                                                                                        | Negative               | Zhang, P. et al. (2005) J. Biol. Chem. 280, 1982–1991.                                                                              |
| cdc25A                 | Forms complex with Akt and Raf1 to promote cell survival                                                                                    | Positive               | Fuhrmann, G. et al. (2001) Oncogene 20, 4542-4553.                                                                                  |
| cdc37                  | Binds to Akt and prevents its degradation                                                                                                   | Positive               | Miyata, Y. et al. (2004) Mol. Cell. Biol. 24, 4065-4074.                                                                            |
| CTMP                   | Binds to the hydrophobic motif of Akt and prevents Akt activation                                                                           | Negative               | Maira, S.M. et al. (2001) Science 294, 374-380.                                                                                     |
| eNOS                   | Phosphorylation of eNOS at Ser113 and Ser614 disrupts binding to Akt                                                                        | N/A                    | Bauer, P.M. et al. (2003) J. Biol. Chem. 278, 14841–14849.                                                                          |
| Ft1                    | Binds to Akt and increases kinase activity                                                                                                  | Positive               | Remy, I. et al. (2004) Mol. Cell. Biol. 24, 1493-1504.                                                                              |
| GRB10                  | Binds to the PH domain of Akt and potentiates its activation                                                                                | Positive               | Jahn, T. et al. (2002) Mol. Cell. Biol. 22, 979-991.                                                                                |
| HSP27                  | Formation of Akt/HSP27 complex necessary for Akt activation in neutrophils                                                                  | Positive               | Rane, M.J. et al. (2003) J. Biol. Chem. 278, 27828-27835.                                                                           |
| ILK                    | Phosphorylation of ILK is required for association with Akt and phosphorylation of Ser473                                                   | Positive               | Persad, S. et al. (2001) J. Biol. Chem. 276, 27462-27469.                                                                           |
| IRAK2                  | Associates with Akt and promotes NF-KB activity                                                                                             | N/A                    | Cenni, V. et al. (2003) Biochem J. 376, 303–311.                                                                                    |
| JIP1                   | Interaction with PH domain of Akt1 inhibits JNK activation                                                                                  | N/A                    | Kim, A.H. et al. (2002) <i>Neuron</i> 35, 697–709.                                                                                  |
| p21 Cip1               | Binds to Akt2 and causes accumulation of p21 Cip1 in the nucleus and cell cyle exit                                                         | N/A                    | Héron-Milhavet, L. et al. (2006) Mol. Cell Biol. 26, 8267–8280.                                                                     |
| Periplakin             | Binds to the PH domain of Akt and regulates intracellular localization                                                                      | N/A                    | van den Heuvel, A.P. et al. (2002) J. Cell. Sci. 115, 3957–3966.                                                                    |
| PIKE-A                 | Binds to Akt and stimulates kinase activity                                                                                                 | Positive               | Ahn, J.Y. et al. (2004) J Biol. Chem. 279, 16441–16451.                                                                             |
| PP2C A                 | Binds to and dephosphorylates Akt                                                                                                           | Negative               | Pim, D. et al. (2005) Oncogene 24, 7830-7838.                                                                                       |
| POSH                   | Binds to Akt2 and downregulates MLK3-JNK activation                                                                                         | N/A                    | Figueroa, C. et al. (2003) J. Biol. Chem. 278, 47922-47927.                                                                         |
| Prohibitin 2           | Binds to the C-terminus of Akt                                                                                                              | N/A                    | Sun, L. et al. (2004) J. Cell. Sci. 117, 3021–3029.                                                                                 |
| Raf1                   | Akt binds to and phosphorylates Raf1, resulting in decreased Raf1 activity                                                                  | N/A                    | Reusch, H.P. et al. (2001) J Biol. Chem. 276, 33630-33637.                                                                          |
| Smad3                  | Insulin-induced Akt and Smad3 association blocks Smad3 phosphorylation and nuclear translocation; TGF- $\beta$ blocks PKB/Smad3 association | N/A                    | Conery, A.R. et al. (2004) <i>Nat. Cell Biol.</i> 6, 366–372.<br>Remy, I. et al. (2004) <i>Nat. Cell Biol.</i> 6, 358–365.          |
| TCL1                   | Binds to the PH domain of Akt, forming oligomers, leading to increased Akt activity                                                         | Positive               | Laine, J. et al. (2000) <i>Mol. Cell</i> 6, 395–407.<br>Pekarsky, Y. et al. (2000) <i>Proc. Natl. Acad. Sci. USA</i> 97, 3028–3033. |
| TRB3                   | Insulin-mediated association with Akt blocks Akt activation                                                                                 | Negative               | Du, K. et al. (2003) Science 300, 1574–1577.                                                                                        |

----- Direct Inhibitory Modification

→ Direct Stimulatory Modification → → Multistep Stimulatory Modification → → Tentative Stimulatory Modification

— — – Tentative Inhibitory Modification Transcriptional Stimulation Transcriptional Inhibition

![](_page_21_Picture_10.jpeg)

Joining of Subunits ----> Translocation Separation of Subunits or Cleavage Products

![](_page_22_Figure_1.jpeg)

![](_page_22_Figure_2.jpeg)

### Insulin Receptor Signaling

Insulin is the major hormone controlling critical energy functions such as plucose and lipid metabolism. Insulin activates the insulin receptor brosine kinase (F), which phosphorelates and recruits different substrate adaptors such as the IFS family of proteins. Tyrosine phosphorylated IRS then displays binding sites for numerous signaling partners. Among them, PI3K has a major role in insulin function, mainly via the activation of the Akt/PKB and the PRCI; cascades. Activated Akt induces glycogen synthesis through inhibition of ESK-3; protein synthesis via mTOR and downstream elements; and cell survival through inhibition of several pro-apoptotic agents (Bad, Forkhead family transcription factors, 65K-(3). Insulin stimulates glucose uptake in muscle and adipocytes via translocation of GLUT4 vesicles to the plasma membrane. GLUT4 translocation involves the PISKWkt pathway and IR-mediated phosphorylation of CAP, and formation of the CAP.CbECKII complex. Insulin signaling also has growth and mitogenic effects, which are mostly mediated by the Ald cascade as well as by activation of the Ras/ WAPK pathway. In addition, insulin signaling inhibits gluconecgenesis in the liver, through disruption of CREB/CBP/Torc2 binding. Insulin signaling also promotes fatty acid synthesis through activation of SREEP-1C, USF1, and D/R. A negative feedback signal emanating from Akt/PKB, PKOZ, p70 SEK, and the MAPK cascades results in serine phosphorylation and inactivation of FIS signaling

Sefect Reviews: Altarejos, J.Y. and Montminy, M. (2011) Nat. Rev. Mol. Cell Biol. 12, 141–161. [Dreng, Z., Tseng, Y., and White, M.F. (2010) Dands Endocrival. Metab. 21, 589–598. [Fritsche, L., Weigert, C., Häring, H.I., and Lehmann, R. (2008) Care: Med. Chem. 15, 1316–1329. [Review], A.F., Fazskerley, D.J., and James, D.E. (2011) Traffic 12, 672–681. [Stolle, K. (2011) J. Mol. Endocrival. 47, 1–10. ] Wong, R.H. and Sai, H.S. (2010) Care: Opin: Pharmacol. 10, 684–681.

We weald like to thank Ding An and Prot. Laurie Goodyna; Josho Diabetes Center; Hanard Medical School, for reviewing this diagram.

### Warburg Effect

Most cells use glucese as a fuel source. Glucere is metabolized by glycolysis in a multistep set of reactions resulting in the creation of pyruvate. In typical cells, much of this pyruvate entres the nettochondria where it is oxidized by the fixeto. Cycle to generate ATP to meet the cell's energy demands. However, in cancer cells or other highly proliferative cell types, much of the pyruvate from glycolysis is directed away from the mitochondria to create lactate through the action of the enzyme lactate dehythogenase (LDH). In many normal cells, lactate production is typically restricted to anaemble conditions when oxygen levels are low, however, cancer cells preferentially channel glucose towards lactate production even when expgen is ptentiful, a process termed "aerabic grootysis" or the when grootest through Effect.

Cancer cells frequently use plutamine as another fuel source, which enters the intechnetia and can be used to replenent Netto Cycle intermediates or can be used to produce more purusets through the action of malic enzyme. Highly proliferative cells need to produce excess lipid, nucleotide, and amine actist for the creation of new biomass. Encess pluces is diverted through the periose phosphate shurt (PPS), to create nucleotides. Fatty acids are critical for new menthrane production and are synthesized from climate in the cytosol through the action of ATP-citiste lyase (ACL) to generate acetyl-CoA. This process requires MACPH inducing equivalents, which can be generated through the actions of malic enzyme, DH1, and also from multiple steps within the PPS pathway. Serine and glycine are critical for biosynthesis of nucleic acids and lipids an well as proteins.

Several signaling pathways contribute to the Warburg Effect. Growth factor atimulation results in signaling through RTKs to activate PDIX/Akt and Rea. Akt promotes glucose transporter activity and atimulates glucolysis through activation of several glucolytic arcymes including beokinase and phosphohuctokinase PFN. Akt phosphorylation of apoptotic pretrim such as Bax makes cancer cells resistant to apoptosis and helps stabilize the outer mitochondrial membrane (OMM) by promoting attachment of intechnomial helpional activation of numerous genes involved in glucolytics and lactate production. The pS3 oncogiene transactivates TP-S3-induced Gyzolysis and Apoptosis Regulator (TIGAP) and results in increased NADPH production by PPS.

#### For selected reviews see www.cellsignal.com

Me would like to thank Prof. Matthew G. Vander Heiden, Massachusette Institute of Technology: Cambridge, MA for reviewing this diagram.

Kinase
Phosphalase

Transcription Factor pro-epoptolic Caspase

Enzyme

GAPIGEF

![](_page_22_Picture_18.jpeg)

![](_page_22_Picture_19.jpeg)

![](_page_23_Figure_1.jpeg)

### AMPK Signaling

AMP-activated protein kinase (AMPK) plays a key role as a master regulator of cellular energy homeostasis. The kinase is activated in response to stresses that deplete cellular ATP supplies such as low glucose, hypoxia, ischemia, and heat shock. It exists as a heterotrimeric complex composed of a catalytic 4 subunit and requisitory 8 and # subunits. Binding of AMP to the y subunit allosterically activates the complex, making it a more attractive substrate for phosphorylation on Thr172 in the activation loop of the a subunit by its major upstream AMPK kinase, LKB1. AMPK can also be directly phosphorylated on Thr172 by CAMI0/2 in response to changes in intracellular calcium as occurs following atimulation by metabolic hormones including adiporectin and leptin.

As a cellular energy sensor responding to low ATP levels, AMPK activition positively regulates signaling pathways that replexish cellular ATP supplies, including fatty acid oridation and autophage AMPK negatively regulates ATP-consuming biosynthetic processes including pluconeogenesis. Ipid and protein synthesis. AMPK accomplishes this through direct phosphorylation of a number of enzymes directly involved in these processes as well as through transcriptional central of metabolism by phesphorylating transcription factors, co-activators, and co-repressors

Due to its role as a central regulator of both lipid and glucose metatholism, AMPK is considered to be a potential therapeutic target for the beatment of type II diabetes melitus, obesity, and cancer. AMPK has also been implicated in a number of species as a critical modulator of aging through its interactions with mTOR and sirtuins.

Select Reviews: Hardle, D.G., Ross, F.A., and Hawley, S.A. (2012) Nat. Rev. Mol. Cell Biol. 13, 251-262. Milliavtova, M.M. and Shaw, R.J. (2011) Nat. Cell Biol. 13, 1016-1023. Hardle, D.G. (2011) Genes Dev. 25, 1895-1908. Carling, D., Mayer, F.V., Sanders, M.J., and Gamblin, S.J. (2011) Nat. Chem. Biol. 7, 512-518. Camb. C. and Auwerx, J. (2010) J. Coll. Mol. Life Sci. 67, 3407-3423. Steinberg, G.R. and Kenp, B.E. (2009) Physiol. Rev. 89, 1025–1078. | Zheng, B.B., Zhou, G., and Li, C. (2009) Cell Melab. 9, 407-416.

We would like to thank Prof. Reuben Stew, The Salk Institute for Biological Studies, La Jolla, CA, for reviewing this diagram.

### AMPK Substrate Table

The AVEX Substrate Table provides a list of substrates for AVEX, along with corresponding phesphorylation sites and references. This table was generated using Prosphors/ItePlus®, Cell Signaling Technology's protein modifica-See page 4 for more information on PhosphoSitePi

| Substrate | AMPKA Isoform    | Organism | Site                                             | Human Site                                   | Sequence (+/-7)                                                                                            | PMID                                                 | Substrate Function and Effect of Phospherylation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------|------------------|----------|--------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACC1      | AMPKA1<br>AMPKA2 | human    | S80                                              | S80                                          | UHIRsoMsQLHUWQ                                                                                             | 17276402<br>19176702<br>18303014<br>15371448         | Acatyl-CoA carboeylase (ADC) catalyzes the carboeylation of acatyl-CoA to malonyl-CoA in the biosynthesis and<br>oxidation of fatty acids. Phosphorylation by AMPK inhibits the onzymatic activity of ACC.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | AMPKA2           | mause    | S79                                              | S80                                          | FHMRSSVIegLHLVKQ                                                                                           | 15866171                                             | Acetyl-DoA carbooplase (ADC) catalyzes the carbooplation of acetyl-DoA to malonyl-CoA in the biosynthesis and<br>oxidation of fathy acids. Phosphorplation by AMPK inhibits the enzymatic activity of ACC.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | AMPKA2<br>AMPKA2 | rat      | \$79<br>\$1200<br>\$1215                         | S80<br>S1201<br>S1216                        | FHMRSamaglHOWQ<br>IPTLNRMafASNLNH<br>YGMTHWAAVSDVLLD                                                       | 12015362<br>7915280<br>1688796<br>2900138<br>1967580 | Acityl-CoA to matoryl-CoA in the biosynthesis and<br>oxidation of fatty acids. Phosphorylation by AVPK inhibits the enzymatic activity of ACC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ACC2      | AMPKA1           | human    | S222                                             | 8222                                         | PTMRPSWsGLHLWR                                                                                             | 17276402                                             | Acetyl-CoA carboejiase (ADC) catalyzes the carboejiation of acetyl-CoA to malonyl-CoA in the biosynthesis and<br>oxidation of fathy acids. Phosphorylation by AMPK inhibits the enzymatic activity of ACC.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AMPKA1    | AMPKAT           | human    | \$360<br>\$486<br>\$494<br>\$496<br>T183<br>T388 | S360<br>S486<br>S494<br>S496<br>T183<br>T388 | LAISPPOSELDDHHL<br>DEIESASGWPOR<br>GJAIPORSBAISWIR<br>APORSBAISWIRSC<br>SDGEELRISCGSPNy<br>BPRARINLDELINPO | 19370078                                             | AMPK is a heterotrimeric complex composed of a catalytic in subunit and regulatory b and g subunits, each of which is<br>encoded by two or three distinct genes (e1, 2; §1, 2; γ1, 2; 3). The kinase is activated by an elevated AMPVATP ratio<br>that to caliular and environmental strass, such as heat shock, hepoxia, and ischemia. Accumulating evidence indicates<br>that AMPK not only regulates the metabolism of fatty acids and glycogen, but also modulates protein synthesis and<br>cell growth through EP2 and TSE2/htTCR pathways, as well as blood flow via eMDS/inf\DS. AMPK\n1 phosphorylation<br>is required for AMPK activation. |
|           | AMPKAT           | rat      | S406<br>T183<br>T299                             | S406<br>T183<br>T209                         | APOPARAWNYESC<br>SDEELRISCEAPNY<br>VOPMKRAIKDIREH                                                          | 17728241<br>17023420<br>16340011<br>9305909          | AMPK is a heterotrimeric complex composed of a catalytic to subunit and regulatory b and g subunits, each of which is encoded by two or three distinct genes (c1, 2; β1, 2; γ1, 2; 3). The kinase is activated by an elevated AMPWTP ratio the to cellular and environmental stress, such as heat shock, hippoila, and ischemia. Accumulating evidence indicates that AMPK to only regulates the metabolism of tatly socials and glocogen, but also modulates probein synthesis and cell growth through EF2 and TSC2/mIOR pathways, as well as blood flow via eMOS/mMOS. AMPKA1 phosphorylation is required for AMPK activation.                    |

Direct Stimulatory Modification

- Direct Inhibitory Modification 

- - - Tentative Inhibitory Modification

Transcriptional Stimulation Transcriptional Inhibition

![](_page_23_Picture_16.jpeg)

 Joining of Subunits
 Translocation Separation of Subunits or Cleavage Products

### Pathway Diagrams 25

| Substrate | AMPKA Isoform     | Organism | Site                                       | Human Site                                 | Sequence (+/-7)                                                                                                | PMID                             | Substrate Function and Effect of Phosphorylation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|-------------------|----------|--------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AMPKB1    | AMPKA1            | human    | S24<br>S108<br>S174<br>S177<br>T80<br>T158 | S24<br>S108<br>S174<br>S177<br>T80<br>T158 | HKtPRRDssggtkdg<br>sklpltrshnnfval<br>MVDSQKCsdVsElss<br>SQKCsdVsElsssPP<br>APAQARPtVFRWTGG<br>NIIQVKktdFEVFDA | 19376078                         | AMPK is a heterotrimeric complex composed of a catalytic $\alpha$ subunit and regulatory b and g subunits, each of which is encoded by two or three distinct genes ( $\alpha$ 1, 2; $\beta$ 1, 2; $\gamma$ 1, 2, 3). The kinase is activated by an elevated AMP/ATP ratio due to cellular and environmental stress, such as heat shock, hypoxia, and ischemia. Accumulating evidence indicates that AMPK not only regulates the metabolism of fatty acids and glycogen, but also modulates protein synthesis and cell growth through EF2 and TSC2/mTOR pathways, as well as blood flow via eNOS/nNOS. The $\beta$ 1 subunit is post-translationally modified by multi-site phosphorylation to regulate AMPK activation and localization. |
|           | AMPKA1            | rat      | S24<br>S25<br>S96<br>S101<br>S108<br>S182  | S24<br>S25<br>S96<br>S101<br>S108<br>S182  | HKTPRRDssGGTKDG<br>KTPRRDssGGTKDGD<br>KEVYLSGsFNNWsKL<br>SGsFNNWsKLPLTRs<br>sKLPLTRsQNNFVAI<br>DVSELSSsPPGPYHQ | 9305909<br>12764152<br>9305909   | AMPK is a heterotrimeric complex composed of a catalytic a subunit and regulatory b and g subunits, each of which is encoded by two or three distinct genes (a1, 2; $\beta$ 1, 2; $\gamma$ 1, 2, 3). The kinase is activated by an elevated AMP/ATP ratio due to cellular and environmental stress, such as heat shock, hypoxia, and ischemia. Accumulating evidence indicates that AMPK not only regulates the metabolism of fatty acids and glycogen, but also modulates protein synthesis and cell growth through EF2 and TSC2/mTOR pathways, as well as blood flow via eNOS/nNOS. The $\beta$ 1 subunit is post-translationally modified by multi-site phosphorylation to regulate AMPK activation and localization.                 |
| AS160     | AMPKA2            | mouse    | S711                                       | S704                                       | PSLHTSFsAPSFTAP                                                                                                | 19923418                         | AS160 is a Rab GTPase-activating protein that regulates insulin-stimulated Glut4 trafficking. Phosphorylation of<br>AS160 by AMPK is involved in the regulation of contraction-stimulated Glut4 translocation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CFTR      | AMPKA1            | human    | S737<br>S768                               | S737<br>S768                               | EPLERRLsLVPDSEQ<br>LQARRRQsVLNLMTH                                                                             | 19095655<br>19419994             | CFTR is a plasma membrane cyclic AMP activated chloride channel that is expressed in the epithelial cells of the<br>lung and several other organs. CFTR channels are kept closed by AMPK mediated phosphorylation in non-stimulated<br>epithelium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ChREBP    | AMPKA1            | rat      | S568                                       | S556                                       | TLLRPPEsPDAVPEI                                                                                                | 11724780                         | Carbohydrate-responsive element-binding protein (ChREBP) is a transcriptional repressor that regulates cellular energy<br>homeostasis. AMPK phosphorylation inhibits the ability of CHBERP to bind DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CK1-E     | AMPKA1            | human    | S389                                       | S389                                       | RGAPANVsssDLtGR                                                                                                | 17525164                         | CK1-E (Casein Kinase I epsilon) is a member of a family of protein kinases implicated in multiple processes including<br>DNA repair, cell morphology, and Wnt signaling. Multiple inhibitory autophosphorylation sites have been identified near<br>the C-terminus of CK1-E including an AMPK site that results in increased CK1-E activity.                                                                                                                                                                                                                                                                                                                                                                                             |
| CRY1      | AMPKA1            | mouse    | S71                                        | S71                                        | ANLRKLNsRLFVIRG                                                                                                | 19833968                         | CRY1 is a member of the DNA photolyase class-1 family that acts as a regulator of the circadian clock. CRY1 is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| eEF2K     | AMPKA1            | human    | S398                                       | S398                                       | DSLPSsPsSATPHSQ                                                                                                | 14709557                         | Eukaryotic elongation factor 2 kinase (eEF2k) phosphorylates and inactivates eEF2, resulting in the inhibition of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| eNOS      | AMPKA1            | COW      | S1179                                      | S1177                                      | TSRIRtQsFSLQERH                                                                                                | 12107173                         | Endothelial nitric-oxide synthase (eNOS) catalyzes the production of nitric oxide (NO), a key regulator of blood pressure, vascular remodeling, and angiogenesis. eNOS is activated by AMPK phosphorylating Ser1177 in response to various stimuli.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | AMPKA1            | human    | S633<br>S1177                              | S633,<br>S1177                             | WRRKRKEssNTDSAG<br>TsRIRtQsFsLQERQ                                                                             | 12791703<br>17276402<br>20479254 | Endothelial nitric-oxide synthase (eNOS) catalyzes the production of nitric oxide (NO), a key regulator of blood<br>pressure, vascular remodeling, and angiogenesis. eNOS is activated by AMPK phosphorylating Ser1177 in response<br>to various stimuli.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | AMPKA1            | rat      | T494<br>S1176                              | T495, S1177                                | TGITRKKtFKEVANA<br>TSRIRTQsFsLQERQ                                                                             | 10025949                         | Endothelial nitric-oxide synthase (eNOS) catalyzes the production of nitric oxide (NO), a key regulator of blood<br>pressure, vascular remodeling, and angiogenesis. eNOS is activated by AMPK phosphorylating Ser1177 in response<br>to various stimuli.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GABBR1    | AMPKA1            | rat      | S948                                       | S918                                       | ELRHQLQsRQQLRSR                                                                                                | 17224405                         | The metabotropic GABA(B) receptor is coupled to G proteins that modulate slow inhibitory synaptic transmission.<br>Functional GABA(B) receptors form heterodimers of GABA(B)R1 and GABA(B)R2 where GABA(B)R1 binds the GABA<br>ligand and GABA(B)R2 is the primary G protein contact site. AMPK mediated phosphorylation of GABA receptors<br>increases activity as part of a neuroprotective mechanism.                                                                                                                                                                                                                                                                                                                                 |
| GABBR2    | AMPKA1            | rat      | S783                                       | S784                                       | VTSVNQAsTSRLEGL                                                                                                | 17224405                         | The metabotropic GABA(B) receptor is coupled to G proteins that modulate slow inhibitory synaptic transmission.<br>Functional GABA(B) receptors form heterodimers of GABA(B)R1 and GABA(B)R2 where GABA(B)R1 binds the GABA<br>ligand and GABA(B)R2 is the primary G protein contact site. AMPK mediated phosphorylation of GABA receptors<br>increases activity as part of a neuroprotective mechanism.                                                                                                                                                                                                                                                                                                                                 |
| GBF1      | AMPKA1            | human    | T1337                                      | T1337                                      | GKIHRsAtDADVVNs                                                                                                | 18063581                         | Golgi-specific brefeldin A resistance factor 1 promotes guanine nucleotide exchange in the Golgi apparatus. GBF1 phosphorylation by AMPK occurs in response to low glucose, resulting in Golgi disassembly and lowered intracellular levels of ATP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GFAT      | AMPKA1            | human    | S261                                       | S261                                       | CNLsRVDsttCLFPV                                                                                                | 17941647<br>19170765             | GFAT, glutamine:fructose-6-phosphate aminotransferase 1, is the rate-limiting enzyme of the hexosamine biosynthesis<br>pathway generating the building blocks for protein and lipid glycosylation. GFAT activity is regulated by AMPK<br>phosphorylation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GYS1      | AMPKA1            | rabbit   | S8                                         | S8                                         | MPLSRTLsVSsLPGL                                                                                                | 2567185                          | Glycogen synthase 1 (GYS1) is a key enzyme in the regulation of glycogen synthesis in muscle. AMPK mediated<br>phosphorylation leads to inactivation of GYS1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H2B       | AMPKA1            | human    | S37                                        | S37                                        | RKRsRkEsyslyVyk                                                                                                | 20647423                         | The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of<br>chromatin. In response to metabolic stress, AMPK is recruited to responsive genes and phosphorylates histone H2B at<br>S37, activating transcription.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HAS2      | AMPKA2            | human    | T110                                       | T110                                       | LQSVKRLtYPGIKVV                                                                                                | 21228273                         | Hyaluronan synthase 2 (HAS2) regulates the synthesis of hyaluronan (HA), an extracellular matrix protein involved in<br>cell motility, proliferation, tumorigenesis, and inflammation. HAS2 phosphorylation by AMPK results in a loss of HAS2<br>enzymatic activity and impaired HA regulated functions.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HDAC5     | AMPKA1,<br>AMPKA2 | human    | S259,<br>S498                              | S259<br>S498                               | FPLRKTAsEPNLKVR<br>RPLSRtQssPLPQsP                                                                             | 18184930                         | Histone deacetylase 5 (HDAC5) acts as a repressor of transcription by removing histone tail acetylations, promoting a<br>closed chromatin configuration. AMPK mediated phosphorylation inhibits the repression activity of HDAC5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| HNF4      | AMPKA1            | human    | S313                                       | S313                                       | GkikRLRsQVQVsLE                                                                                                | 12740371                         | Hepatocyte nuclear factor 4α (HNF4α) is a transcription factor that belongs to the steroid hormone receptor<br>superfamily and regulates lipid homeostasis in the liver. AMPK phosphorylation of HNF4α inhibits dimer formation and<br>DNA binding, resulting in increased protein degradation.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HSL       | AMPKA1            | human    | S855                                       | S855                                       | EPMRRsVsEAALAQP                                                                                                | 16188906,<br>2537200             | HSL (hormone-sensitive lipase) catalyzes the hydrolysis of triacylglycerol, the rate-limiting step in lipolysis. AMPK<br>phosphorylation of HSL reduces HSL phosphorylation by PKA and inhibits HSL activity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| IKK       | AMPKA2            | human    | S177<br>S181                               | S177<br>S181                               | AKELDQGsLCtsFVG<br>DQGsLCtsFVGTLQy                                                                             | 21673972                         | The NF-kB/Rel transcription factors are present in the cytosol in an inactive state, in a complex with the inhibitory IkB proteins. IkB kinase (IKK) complex containing the IKKß catalytic subunit targets IkB for proteasomal degradation. Activation of IKK depends upon AMPK phosphorylation of the activation loop of IKKß.                                                                                                                                                                                                                                                                                                                                                                                                          |
| IRS1      | AMPKA1            | mouse    | S789                                       | S794                                       | QHLRLSSsSGRLRYT                                                                                                | 11598104                         | Insulin receptor substrate 1 (IRS1) is one of the major substrates of the insulin receptor kinase. Insulin signaling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| KCNMA1    | AMPKA1            | mouse    | S722                                       | \$722                                      | GRSERDCsCMSGRVR                                                                                                | 21209098                         | Calcium-activated by taking prosphory action of this 1.<br>Calcium-activated by taking to the prosphory action of the prosphory activated by membrane depolarization,<br>increased cytosolic Ca2+, and cytosolic Mg2+. KCNMA1 regulates several membrane polarization activities, as well<br>as acting as an oxygen mediator under hypoxic conditions. KCNMA1 is inhibited by AMPK phosphorylation in cell types<br>that do not monitor oxygen levels.                                                                                                                                                                                                                                                                                   |
| Kir6.2    | AMPKA1            | rat      | S385                                       | S385                                       | AKPKFSIsPDSLS                                                                                                  | 19357830                         | ATP-sensitive inward rectifier potassium channel 11 (Kir6.2) is a G protein mediated receptor that allows K+ to flow into the cell. The Kir6.2 channel is closed by AMPK mediated phosphorylation to allow insulin secretion in pancreatic beta cells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| KLC1      | AMPKA1            | human    | S521                                       | S521                                       | ENMEKRRsREsLNVD                                                                                                | 20074060                         | Kinesin light chain 1 (KLC1), also known as KNS2, is a motor protein that associates with microtubule components of the cytoskeleton. The intracellular trafficking of organelles may be regulated by AMPK mediated phosphorylation of KLC1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| KLC2      | AMPKA1            | human    | S545<br>S582                               | S545<br>S582                               | GSLRRsGsFGKLRDA<br>PRMKRAssLNFLNKs                                                                             | 21725060                         | Kinesin light chain 2 (KLC2) is a motor protein that associates with microtubule components of the cytoskeleton. The intracellular trafficking of organelles may be regulated by AMPK mediated phosphorylation of KLC2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Kinase Phosphatase Transcription Factor

![](_page_24_Picture_4.jpeg)

![](_page_24_Picture_5.jpeg)

GAP/GEF GTPase

![](_page_24_Picture_7.jpeg)

![](_page_24_Picture_8.jpeg)

| Substrate | AMPKA Isoform    | Organism | Site                | Human Site          | Sequence (+/-7)                                | PMID                             | Substrate Function and Effect of Phosphorylation                                                                                                                                                                                                                                                                                                              |
|-----------|------------------|----------|---------------------|---------------------|------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KPNA2     | AMPKA1           | human    | S105                | S105                | QAARKLLsREkQPPI                                | 15342649                         | Importin subunit a-2 (KPNA2) is an adaptor subunit of the Importin nuclear protein import receptor. KPNA2<br>phosphorylation by AMPK is required for Importin nuclear import mediation activity.                                                                                                                                                              |
| Kv2.1     | AMPKA1<br>AMPKA2 | rat      | S444<br>S541        | S444, S541          | ERAKRNGsIVsMNMK<br>SKMAKTQsQPILNTK             | 22006306                         | Potassium voltage-gated channel subfamily B member 1 (Kv2.1) mediates voltage dependent flow of K+ across<br>membranes. Kv2.1 mediated action potential frequency is modulated under stress conditions via phosphorylation by<br>AMPK.                                                                                                                        |
| mTOR      | AMPKA1           | mouse    | T2446               | T2446               | NKRsRtRtDsysAGQ                                | 14970221                         | The mammalian target of rapamycin (mTOR) is a Ser/Thr protein kinase that functions as an ATP and amino acid<br>sensor to balance nutrient availability and cell growth. AMPK phosphorylates mTOR in response to nutrient deprivation<br>and inhibits mTOR response to growth factor phosphorylation.                                                         |
| NKCC2     | AMPKA1           | human    | S130                | S130                | GPKVNRPsLLEIHEQ                                | 19176702                         | NKCC2 is an electroneutral cation chloride-coupled efflux cotransporter that regulates cell volume and maintains<br>cellular homeostasis in response to osmotic and oxidative stress. NKCC2 chloride efflux activity is inhibited by AMPK<br>phosphorylation, thereby increasing intracellular chloride concentration in the kidney.                          |
|           | AMPKA1           | mouse    | S126                | S130                | GPKVNRPsLLEIHEQ                                | 17341212                         | NKCC2 is an electroneutral cation chloride-coupled efflux cotransporter that regulates cell volume and maintains<br>cellular homeostasis in response to osmotic and oxidative stress. NKCC2 chloride efflux activity is inhibited by AMPK<br>phosphorylation, thereby increasing intracellular chloride concentration in the kidney.                          |
| p27Kip1   | AMPKA1           | human    | T198                | T198                | PGLRRRQt                                       | 17237771                         | p27 Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors that enforces the G1 restriction point<br>via its inhibitory binding to CDK2/cyclin E and other CDK/cyclin complexes. p27Kip1 stability is increased by AMPK<br>mediated phosphorylation, resulting in increased survival under stress conditions.                           |
| p27Kip1   | AMPKA1           | mouse    | S83<br>T170<br>T197 | S83<br>T170<br>T198 | WQEVERGsLPEFyYR<br>QNKRANRtEENVSDG<br>KPGLRRQt | 17237771<br>18701472<br>20146253 | p27 Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors that enforces the G1 restriction point<br>via its inhibitory binding to CDK2/cyclin E and other CDK/cyclin complexes. p27Kip1 stability is increased by AMPK<br>mediated phosphorylation, resulting in increased survival under stress conditions.                           |
| p300      | AMPKA1           | human    | S89                 | S89                 | SELLRSGsSPNLNMG                                | 11518699                         | The transcriptional coactivator p300 associates with transcriptional regulators and signaling molecules, integrating<br>multiple signal transduction pathways with the transcriptional machinery. AMPK mediated phosphorylation represses<br>p300 activity by disrupting the association of p300 with nuclear receptors.                                      |
| p53       | AMPKA1           | human    | S20<br>T18          | S20<br>T18          | PLsQEtFsDLWKLLP<br>EPPLsQEtFsDLWKL             | 17339337                         | The p53 tumor suppressor protein plays a major role in cellular response to DNA damage and other genomic<br>aberrations. Activation of p53 can lead to either cell cycle arrest and DNA repair or apoptosis. DNA damage induces<br>phosphorylation of p53 and leads to a reduced interaction between p53 and its negative regulator, the oncoprotein<br>MDM2. |
|           | AMPKA2           | mouse    | S15                 | S15                 | IsLELPLsQEtFsGL                                | 15866171                         | The p53 tumor suppressor protein plays a major role in cellular response to DNA damage and other genomic<br>aberrations. Activation of p53 can lead to either cell cycle arrest and DNA repair or apoptosis. DNA damage induces<br>phosphorylation of p53 and leads to a reduced interaction between p53 and its negative regulator, the oncoprotein<br>MDM2. |
| PFKFB2    | AMPKA1           | human    | S466                | S466                | PVRMRRNsFtPLSSS                                | 12853467                         | Phosphofructokinase (PFK) catalyzes the phosphorylation of fructose-6-phosphate in glycolysis. PFKFB2 initiated<br>glycolysis is activated by AMPK phosphorylation.                                                                                                                                                                                           |
| PFKFB3    | AMPKA1           | human    | S461                | S461                | NPLMRRNsVtPLAsP                                | 12065600,<br>15896703            | Phosphofructokinase (PFK) catalyzes the phosphorylation of fructose-6-phosphate in glycolysis. PFKFB2 initiated<br>glycolysis is activated by AMPK phosphorylation.                                                                                                                                                                                           |
| PGC-1     | AMPKA2           | mouse    | T177<br>S538        | T178<br>S539        | NHTHRIRtNPAIVKT<br>SLFDVSPsCSSFNSP             | 17609368                         | PGC-1a interacts with a diverse array of transcription factors to regulate adaptive thermogenesis, energy metabolism, glucose uptake, gluconeogenesis, insulin secretion, and mitochondrial biogenesis. PGC-1a activity in skeletal muscle is induced by AMPK-mediated phosphorylation.                                                                       |
| PLD1      | AMPKA2           | human    | S505                | S505                | GSVKRVTsGPsLGSL                                | 20231899                         | Phosphatidylcholine-specific phospholipase D (PLD) hydrolyzes phosphatidylcholine (PC) to produce choline and<br>phosphatidic acid (PA). PA is the precursor of the second messenger, diacylglycerol (DAG). PLD1 is activated by AMPK<br>phosphorylation, leading to an increase in glucose uptake in muscle under stress deprivation conditions.             |
| PPP1R3C   | AMPKA1           | human    | S33<br>S293         | S33<br>S293         | MRLCLAHsPPVKSFL<br>LESTIFGsPRLASGL             | 19171932                         | Protein phosphatase 1 is a serine/threonine phosphatase holoenzyme composed of a catalytic subunit and an<br>inhibitory regulatory subunit. PPP1R3C is a regulatory subunit that confers specificity for increasing glycogen<br>synthesis. AMPK targets PPP1R3C for phosphorylation and proteasomal degradation, which inhibits glycogen<br>synthesis.        |
| PPP2R5C   | AMPKA1           | human    | S298<br>S336        | S298<br>S336        | KYWPKTHsPKEVMFL<br>RQLAKCVsSPHFQVA             | 19366811                         | Protein phosphatase 2 is a tripartite serine/threonine phosphatase holoenzyme composed of a catalytic subunit, a<br>structural subunit and a regulatory subunit. AMPK phosphorylates the regulatory subunit PPP2R5C, which results in<br>dephosphorylation of the catalytic subunit and increased PP2A activity.                                              |
| Raf1      | AMPKA1           | human    | S259<br>S621        | S259<br>S621        | sQRQRststPNVHMV<br>PKINRsAsEPsLHRA             | 9091312                          | Raf-1 (c-Raf) is recruited by GTP-bound Ras to activate the MEK-MAP kinase pathway. Inhibitory 14-3-3 protein<br>binding sites on c-Raf can be phosphorylated by AMPK.                                                                                                                                                                                        |
| raptor    | AMPKA1           | human    | S792                | S792                | DKMRRASsYSsLNsL                                | 18439900                         | The regulatory associated protein of mTOR (Raptor) was identified as an mTOR binding partner that mediates mTOR<br>signaling to downstream targets. AMPK phosphorylation of raptor is essential for inhibition of the raptor-containing<br>mTOR complex 1 (mTORC1) and induces cell cycle arrest when cells are stressed for energy.                          |
| Rb        | AMPKA1           | mouse    | S804                | S811                | IYIsPLKsPyKIsEG                                | 19217427                         | The retinoblastoma tumor suppressor protein, Rb, regulates cell proliferation by controlling progression through<br>the restriction point within the G1-phase of the cell cycle. AMPK regulation of brain development is achieved by<br>modulating control of the cell cycle via phosphorylation of Rb.                                                       |
| smMLCK    | AMPKA1           | chicken  | S1749               | S1760               | RAIGRLSsMAMISGM                                | 18426792                         | Smooth muscle myosin light chain kinase (smMLCK) is activated by high Ca2+ induced calcium/calmodulin. Smooth<br>muscle contraction is activated smMLCK mediated phosphorylation of myosin light chains. Smooth muscle contraction<br>is attenuated by AMPK phosphorylation and inactivation of smMLCK.                                                       |
| TBC1D1    | AMPKA1           | human    | S237<br>T596        | S237<br>T596        | RPMRKSFsQPGLRsL<br>AFRRRANtLsHFPIE             | 17995453                         | TBC1D1 is a Rab GTPase activating protein involved in vesicle trafficking in response to insulin. AMPK acts in<br>association with insulin and growth factor signaling to activate TBC1D1 mediated vesicle regulation.                                                                                                                                        |
| TIF-IA    | AMPKA1           | human    | S635                | S635                | DTHFRsPsSSVGsPP                                | 19815529                         | RNA polymerase I-specific transcription initiation factor RRN3 (TIF-IA) is required for RNA polymerase I initiation.<br>Transcription of rRNA is inhibited during times of stress by AMPK phosphorylation inhibition of TIF-IA.                                                                                                                               |
| TORC2     | AMPKA1           | mouse    | S171                | S171                | SALNRtssDsALHTs                                | 16148943                         | Torc2 (transducer of regulated CREB activity 2) functions as a CREB co-activator and is implicated in mediating the effects of hormone and glucose sensing pathways. Torc2 is phosphorylated by AMPK at Ser171 and becomes sequestered in the cytoplasm, inhibiting hepatic gluconeogenesis.                                                                  |
| TSC2      | AMPKA1           | rat      | S1389<br>T1271      | S1387,<br>T1271     | QPLsKSSsSPELQTL<br>PTLPRSNtVASFSSL             | 16959574<br>14651849             | Tuberin is a product of the TSC2 tumor suppressor gene and an important regulator of cell proliferation and tumor<br>development. AMPK phosphorylates tuberin during periods of energy starvation, enhancing tuberin activity and<br>resulting in increased translation.                                                                                      |
| ULK1      | AMPKA1           | human    | S638                | S638                | FDFPKtPssQNLLAL                                | 21383122                         | ULK1 is a serine/threonine kinase involved in axon growth, endocytosis of critical growth factors such as NGF, and can<br>act as a convergence point for multiple signals that control autophagy. AMPK, activated during low nutrient conditions,<br>directly phosphorylates ULK1 at multiple sites to promote autophagy.                                     |
|           | AMPKA1           | mouse    | S467<br>S555        | S467, S556          | sAIRRsGsttPLGFG<br>GLGCRLHsAPNLSDF             | 21205641                         | ULK1 is a serine/threonine kinase involved in axon growth, endocytosis of critical growth factors such as NGF, and can<br>act as a convergence point for multiple signals that control autophagy. AMPK, activated during low nutrient conditions,<br>directly phosphorylates ULK1 at multiple sites to promote autophagy.                                     |
| VASP      | AMPKA1           | human    | T278                | T278                | LARRRKAtQVGEktP                                | 17082196                         | VASP belongs to the Ena/VASP family of adaptor proteins linking the cytoskeletal system to the signal transduction<br>pathways and that it functions in cytoskeletal organization, fibroblast migration, platelet activation, and axon guidance.<br>AMPK phosphorylation of VASP leads to specific cytoskeletal rearrangements.                               |
| ZNF692    | AMPKA1           | human    | S470                | S470                | VAAHRSKsHPALLLA                                | 17097062                         | ZNF692, also known as AREBP, is a zinc finger transcription factor involved in the expression of gluconeogenesis genes. ZNF692 DNA binding ability is abrogated by AMPK mediated phosphorylation during times of metabolic stress.                                                                                                                            |

-----> Direct Stimulatory Modification ----- Direct Inhibitory Modification

→ → Multistep Stimulatory Modification — → Tentative Stimulatory Modification

Transcriptional Stimulation

Transcriptional Inhibition

![](_page_25_Picture_7.jpeg)

Joining of Subunits ----> Translocation Separation of Subunits or Cleavage Products

![](_page_26_Figure_1.jpeg)

#### Hormones, Growth Factors, Cytokines, Neuropeptides Mitogene Stress Writ Ê Frizzlad 0000000 000000000000 PTEN Grave Dul PISK PDK1 mTORC2 LK81 Akt Erk **p38 MAP** TAMP: ŧ ATP -> AMPK CSK-3 Amino Acids TEC2 GRD10 (TSCI) RagA/B FKSP12 PRASE POORSK RegC/D . Tarin1 PP242 mTORC1 KU83794 WYE354 mTORC1 =70 S&K Baptor G(L) MTCR BOTTOR (96) POCDA NF4B mTORC2 AN DITAH NIFAE NIFAG Shit Phils Rictor Crit. PAGE BPI OF4E INTOR DEPTOR PAIPE Translation Off (PAIP) 45-BP1 435 (oIF4F = oIF4E + oIF4G + eIF4A) 488 Ca Translation On

### mTOR Signaling

The mammalian target of rapamycin (mTOR) is an atypical serine-threanine kinase that is present in two distinct complexes. mTOR complex 1 (mTORC1) is composed of mTOR. Raptar, GBL (inLSTR), and Deptor and is partially inhibited by raponrycin. mTORC1 integrates multiple signals reflecting the availability of growth factors, nutrients, or energy to promote either cellular growth when conditions are favorable or catabolic processes during stress or when conditions are unfavorable. Growth factors and hormones (e.g. insuliit) signal to mTORC1 via Akt, which inactivates TSC2 to prevent inhibition of mTORC1. Alternatively, low ATP levels lead to the AMPK-dependent activation of TSC2 and phosphorulation of raptor to reduce mTORC1 signaling. Anima acid availability is signaled to mTORC1 via a pathway involving the Rag and Ragulator (LAWTOR1-S) proteins. Active imTORC1 has a number of downstream biological effects including translation of mRNA via the phosphorelation of downstream targets (4E-BP1 and p70 S6 Kinase), suppression of autophagy (Agr13, ULK1), ribosome biogenesis, and activition of transcription leading to mitochandrial metabolism or adjoogenesis. The mTOR complex 2 (mTORC2) is composed of mTOR, Rictor, GBL, Sin1, PRRS/Protor-1, and Deptor and promotes cellular sunival by activating Akt. mTORC2 also regulates cytoskaliatal dynamics by activating PNCa and regulates ion transport and provith via SGR1 phosphorylation. Aberrant mTOR signaling is involved in many disease states including cancer, cardievescular disease, and metabolic disorders.

Select Reviews: Dowing, R.J., Topisirovic, I., Fonseca, B.D., and Sanenberg, N. (2010). Biochim. Bipphys. Acts. 1604, 433–439. United, E.A., and Tee, A.R. (2009). Cell. Signal. 21, 627–635. Hotelse, C.A., and Klami, E. (2010). Tends Neurosci. 33, 67–75. Laplante, M., and Sabelini, D.M. (2009). J. Cell. Sci. 122, 3589–3594. Invariation, T.R. (2010). Cent. Opt. Cell. 22, 157–168. J. Zancu, R., Eleyan, A., and Sabelini, D.M. (2011). Nat. Rev. Mol. Cell 664, 12, 21–35.

We would like to thank Carson Thoneen and Prof. David Sabathi, Withehead Institute for Biomedical Research, MIT, Cambridge, MA, for reviewing the diagram.

### Translational Control: eIF4E and p70 S6K

eF4E and S8 kinase (S96) play critical roles in translational regulation, eF4E binds the 5° cap-structure of cytaplasmic mINAA and nucleates the eF4F per-initiation complex, which also includes eF4A, a helicase that unwinds complex secondary structure in the mRPAA leader sequence, and eF4G, a large scaffiolding potent that coordinates delivery of the mRPA to eF3 and circularizes the mRPAA through an association with poly/4 binding protein (PABP). Several stimuli, including provet flactors, cytakines, and nutrient availability, regulate both eF4F and S9K through mITORCT (mTOR Complex 1: mTOR, G8L, Raptar, and Depto), mTORCT directly phosphorylates the translational initibility eF4E-binding proteins (4E-BP8, which, when hypo-phosphorylated, prevent the interaction between eF4E and eF4G, mTORCT also directly phosphorylates S8K, which has many targets in the translational machinery. S8 anall robuonet auturit, eF46, an activator of the eF4A helicase; PCCB4, an initibility of eF4A that, is initibility of phosphorylates; and SX4A, as mIRAA splicing factors. Achieved on 0 S9K can also lead to suppression of insulin signaling through a negative feedback loop that derabilizes IRS1.

Select Reviews: Dowing, R.J., Tapiaironic, I., Forseca, B.D., and Sanenberg, N. (2010) Biochim. Biophys. Acts. 1604, 433–439. J. Graff, J.R., Kanicsk, B.W., Cartar, J.H., and Marcussen, E.G. (2000) Cancer Res. 68, 631–634. J. Hotek, M. and Sonenberg, N. (2008) Nat. Rev. Mol. Cell Biol. 6, 318–527. J. Huang, J. and Manning, B.D. (2008) Biochem. J. 412, 179–190. J. Ruvinsky, I. and Mayahas, D. (2008) Render Socheos. Sci. 31, 342–348. J. Sevenberg, N. and Hinnebusch, A.G. (2008) Cell 136, 731–745.

We would like to thank Carson Thoreen and Ptof. David Sabatini, Whitehead institute for Biomedical Research; MT, Cambridge, MA, for reviewing this diagram.

![](_page_26_Picture_11.jpeg)

![](_page_26_Picture_12.jpeg)

![](_page_26_Picture_14.jpeg)

![](_page_26_Picture_15.jpeg)

![](_page_26_Picture_16.jpeg)

![](_page_27_Figure_1.jpeg)

### Translational Control: Overview

The synthesis of new protein is a highly regulated process that allows rapid cellular responses to diverse stimuli post-transcriptionally. Eukaryotic translation initiation factors (eIFs) catalyze the assembly of a functional ribosomal complex, which includes the 40S subunit, mRNA, and the initiator Met-tRNA, and finally the 60S subunit before the first peptide bond is formed. Most regulatory stimuli, such as growth factors and stress, control rate-limiting steps of the initiation process by either stimulating or inhibiting specific eIFs. Elevated levels of  $Ca^{2+}$  or cAMP can also attenuate translation by blocking the action of eukaryotic elongation factor 2 (eEF2).

 Select Reviews:
 Gebauer, F. and Hentze, M.W. (2004) Nat. Rev. Mol. Cell Biol.

 5, 827–835.
 Sonenberg, N. and Hinnebusch, A.G. (2009) Cell 136, 731–745.

 Hinnebusch, A.G. (2011) Microbiol. Mol. Biol. Rev. 75, 434–467.
 Spirin, A.S. (2009) Biochemistry 48, 10688–10692.

 Steitz, T.A. (2008) Nat. Rev. Mol. Cell Biol.
 Steitz, T.A. (2008) Nat. Rev. Mol. Cell Biol.

 9, 242–253.
 Steitz, T.A. (2008) Nat. Rev. Mol. Cell Biol.

We would like to thank Carson Thoreen and David Sabatini, Whitehead Institute for Biomedical Research, MIT, Cambridge, MA, for reviewing this diagram.

![](_page_27_Figure_6.jpeg)

### Translational Control: Regulation of eIF2

The eIF2 initiation complex integrates a diverse array of stress-related signals to regulate both global and specific mRNA translation. Under permissive conditions, eIF2 binds GTP and Met-tRNA to form the termary complex (TC), which then associates with the 40S ribosomal subunit, eIF1, eIF1A, eIF5, and eIF3 to form the 43S pre-initiation complex (PIC). The 43S PIC scans the mRNA UTR for an AUG start codon. Upon AUG recognition, eIF2 hydrolyzes GTP to GDP and dissociates from the mRNA, permitting the binding of the 60S ribosomal subunit and elongation of the polypeptide chain. eIF2 is unable to participate in another round of initiation until GDP is exchanged for GTP, a reaction catalyzed by the guanine nucleotide exchange factor (GEF) eIF2B. This step is tightly regulated, and phosphorylation of eIF2a by a diverse family of four stress-activated kinases—PKR (dsRNA), PERK (ER stress), GCN2 (amino acid starvation), and HRI (heme deficiency)—prevents nucleotide exchange. An increase in eIF2a-GDP limits the availability of the ternary complex and causes a decrease in global protein synthesis while enhancing the translation of specific stress-related mRNA transcripts, such as the transcription factor ATF-4.

Select Reviews: Hinnebusch, A.G. (2011) *Microbiol. Mol. Biol. Rev.* 75, 434–467. Raven, J.F. and Koromilas, A.E. (2008) *Cell Cycle* 7, 1146–1150. Schmitt, E., Naveau, M., and Mechulam, Y. (2010) *FEBS Lett.* 584, 405–412. Wek, R.C., Jiang, H.Y., and Anthony, T.G. (2006) *Biochem. Soc. Trans.* 34, 7–11.

We would like to thank Carson Thoreen and Prof. David Sabatini, Whitehead Institute for Biomedical Research, MIT, Cambridge, MA, for reviewing this diagram.

Direct Stimulatory Modification
 Direct Inhibitory Modification

→ — Multistep Inhibitory Modification

\_\_\_\_ \_ \_ \_ \_ \_ Tentative Inhibitory Modification

L→ Transcriptional Stimulation
L→ Transcriptional Inhibition

![](_page_27_Picture_15.jpeg)

→ Joining of Subunits ···· → Translocation ✓ Separation of Subunits or Cleavage Products

![](_page_28_Figure_1.jpeg)

![](_page_28_Figure_2.jpeg)

### Cell Cycle Control: G1/S Checkpoint

The primary G1/S cell cycle checkpoint controls the commitment of eukaryotic cells to transition through the G1 phase to enter into the DNA synthesis S phase. Two cell cycle kinase complexes, CDK4/6-Cyclin D and CDK2-Cyclin E, work in concert to relieve inhibition of a dynamic transcription complex that contains the retinoblastoma protein (Rb) and E2F. In G1-phase uncommitted cells, hypo-phosphorylated Rb binds to the E2F-DP1 transcription factors forming an inhibitory complex with HDAC to repress key downstream transcription events. Commitment to enter S-phase occurs through sequential phosphorylation of Rb by Cyclin D-CDK4/6 and Cyclin E-CDK2 that dissociates the HDAC-repressor complex, permitting transcription of genes required for DNA replication. In the presence of growth factors, Akt can phosphorylate FoxO1/3, which inhibits their function by nuclear export, thereby allowing cell survival and proliferation. Importantly, a multitude of different stimuli exert checkpoint control, including TGF-B, DNA damage, replicative senescence, and growth factor withdrawal. These stimuli act though transcription factors to induce specific members of the INK4 or Kip/Cip families of cyclin dependent kinase inhibitors (CKIs). Notably, the oncogenic polycomb protein Bmi1 acts as a negative regulator of INK4A/B expression in stem cells and human cancer. In addition to regulating CKIs, TGF-B also inhibits cdc25A transcription, a phosphatase directly required for CDK activation. At a critical convergence point with the DNAdamage checkpoint, cdc25A is ubiquitinated and targeted for degradation via the SCF ubiquitin ligase complex downstream of the ATM/ATR/Chk-pathway. However, timely degradation of cdc25A in mitosis (M-phase) via the APC ubiquitin ligase complex allows progression through mitosis. Furthermore, growth factor withdrawal activates GSK-36 to phosphorylate Cyclin D, which leads to its rapid ubiquitination and proteasomal degradation. Collectively, ubiquitin/proteasome-dependent degradation and nuclear export are mechanisms commonly used to effectively reduce the concentration of cell cycle control proteins. Importantly, Cyclin D1/CKD4/6 complexes are explored as therapeutic targets for cancer treatment as researchers have found this checkpoint to be invariantly deregulated in human tumors

#### For selected reviews see www.cellsignal.com

We would like to thank Dr. Hans Widlund, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, for contributing to this diagram.

### Cell Cycle Control: G2/M DNA Damage Checkpoint

The G2/M DNA damage checkpoint serves to prevent the cell from entering mitosis (M-phase) with genomic DNA damage. Specifically, the activity of the Cyclin B-cdc2 (CDK1) complex is pivotal in regulating the G2-phase transition wherein cdc2 is maintained in an inactive state by the tyrosine kinases Wee1 and Myt1. It is thought that coordinated action of the kinase Aurora A and the cofactor Bora activate PLK1 as cells approach the M-phase, which in turn activates the phosphatase cdc25 and downstream cdc2 activity, hence establishing a feedback amplification loop that efficiently drives the cell into mitosis. Importantly, DNA damage cues activate the sensory DNA-PK/ATM/ ATR kinases, which relay two parallel cascades that ultimately serve to inactivate the Cyclin B-cdc2 complex. The first cascade rapidly inhibits progression into mitosis: the Chk kinases phosphorylate and inactivate cdc25, which prevents activation of cdc2. The slower second parallel cascade involves phosphorylation of p53 and allows for its dissociation from MDM2 and MDM4 (MdmX), which activates DNA binding and transcriptional regulatory activity, respectively. The transcriptional ability of p53 is further augmented through acetylation by the co-activator complex p300/PCAF. The second cascade constitutes the p53 downstream-regulated genes including: 14-3-3, which binds to the phosphorylated Cyclin B-cdc2 complex and exports it from the nucleus; GADD45, which binds to and dissociates the Cvclin B-cdc2 complex; and p21 Cip1, an inhibitor of a subset of the cyclin-dependent kinases including cdc2. Recent data suggest an important role for the p53-regulated WIP1 phosphatase that acts as a critical dampener of DNA damage signaling in cancer. In human cancer, researchers have found p53 to be commonly mutated, indicating that this checkpoint is a critical barrier to tumor formation. In addition, sporadic and familial mutations in the DNA-repair proteins such as the BRCA-family, ATM, and the Fanconi Anemia proteins further highlight this as a key tumor suppressor checkpoint.

#### For selected reviews see www.cellsignal.com

We would like to thank Dr. Hans Widlund, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, for contributing to this diagram.

![](_page_28_Picture_11.jpeg)

![](_page_28_Picture_12.jpeg)

![](_page_28_Picture_13.jpeg)

![](_page_28_Picture_14.jpeg)

![](_page_28_Picture_15.jpeg)

![](_page_28_Picture_16.jpeg)

![](_page_28_Picture_17.jpeg)

### Jak/Stat Utilization

The Jak/Stat Utilization Table tabulates the combinatorial use of tyrosine kinases and Stat proteins in cytokine/growth factor signaling.

| Ligand                  | Receptor                                            | Jak-Kinase   | Other Tyrosine<br>Kinases  | Stat Family<br>Members                   |
|-------------------------|-----------------------------------------------------|--------------|----------------------------|------------------------------------------|
| IL-6                    | IL-6Ra+gp130                                        | Jak1,2, Tyk2 | Hck                        | Stat1, Stat3                             |
| IL-11                   | IL-11R+gp130                                        | Jak1,2, Tyk2 | Src, Yes                   | Stat3                                    |
| CNTF, CT-1,<br>LIF, OSM | CNTFR+gp130, CT-1R+gp130,<br>LIFR+gp130, OSMR+gp130 | Jak1,2, Tyk2 | Src family                 | Predominant: Stat3<br>Secondary: Stat1,5 |
| G-CSF                   | G-CSFR                                              | Jak2, Tyk2   | Lyn                        | Stat3                                    |
| IL-12<br>(p40+p35)      | IL-12Rβ1+IL-12Rβ2                                   | Jak2, Tyk2   | Lck                        | Stat4                                    |
| Leptin                  | LeptinR                                             | Jak2         | not determined             | Stat3,5,6                                |
| IL-3                    | IL-3Rα+βc                                           | Jak2         | Fyn, Hck, Lyn              | Stat3,5,6                                |
| IL-5                    | IL-5R+βc                                            | Jak2         | Btk                        | Stat3,5,6                                |
| GM-CSF                  | GM-CSFR+βc                                          | Jak2         | Hck, Lyn                   | Stat3,5                                  |
| Angiotensin             | GPCR                                                | Jak2, Tyk2   |                            | Stat1,2,3                                |
| Serotonin               | GPCR                                                | Jak2         |                            | Stat3                                    |
| a-Thrombin              | GPCR                                                | Jak2         |                            | Stat1,3                                  |
| Chemokines              | CXCR4                                               | Jak2,3       |                            |                                          |
| IL-2                    | IL-2Rα+IL-2Rβ+γc                                    | Jak1,2,3     | Fyn, Hck, Lck,<br>Syk, Tec | Stat3,5                                  |
| IL-4                    | IL-4Ra+ycR or IL-4Ra+<br>IL-13Ra1                   | Jak1,3       | Lck, Tec                   | Stat6                                    |
| IL-7                    | IL-7R+γc                                            | Jak1,3       | Lyn                        | Stat3,5                                  |
| IL-9                    | IL-9R+γc                                            | Jak1,3       | not determined             | Stat1,3,5                                |
| IL-13                   | IL-13Ra1+ IL-4Ra                                    | Jak1,2, Tyk2 | Ctk                        | Stat6                                    |
| IL-15                   | IL-15Rα+IL-2Rβ+γc                                   | Jak1,3       | Lck                        | Stat3,5                                  |
| IL-19                   | IL-20Ra+IL-20Rß                                     | Jak1,?       |                            | Stat3                                    |

| 0 0                      |                                    |                        | @ 2007 2010 Och (         | signaling reennology, me.                    |
|--------------------------|------------------------------------|------------------------|---------------------------|----------------------------------------------|
| Ligand                   | Receptor                           | Jak-Kinase             | Other Tyrosine<br>Kinases | Stat Family<br>Members                       |
| IL-20                    | IL-20Rα+IL-20Rβ,<br>IL-22R+IL-20Rβ | Jak1,?                 |                           | Stat3                                        |
| IL-21                    | IL-21R+yc                          | Jak1,3                 |                           | Stat1,3,5                                    |
| IL-22                    | IL-22R+IL-10Rβ                     | Jak1, Tyk2             |                           | Stat1,3,5                                    |
| IL-23<br>(p40+p19)       | IL-12Rβ1+IL-23R                    | Jak2                   | Tyk2                      | Stat4                                        |
| IL-24                    | same as IL-20                      | Jak1,?                 |                           | Stat3                                        |
| IL-26                    | IL-20Ra+IL-10Rβ                    | Jak1, Tyk2             |                           | Stat3                                        |
| IL-27<br>(EBI3+p28)      | gp130+WSX1                         | Jak1,2, Tyk2           |                           | Stat1,2,3,4,5                                |
| IL-28A, IL-28B,<br>IL-29 | IL-28R+IL-10Rβ                     | Jak1, Tyk2             |                           | Stat1,2,3,4,5                                |
| IL-31                    | IL-31Ra+OSMR                       | Jak1,2, Tyk2           |                           | Stat1,3,5                                    |
| IL-35<br>(p35+EBI3)      | gp130+WSX1                         | Jak1,2, Tyk2           |                           | Stat1,3,5                                    |
| GH                       | GHR                                | Jak2                   | Src family                | Stat3,5 (mainly<br>Stat5a)                   |
| Тро                      | TpoR (c-Mpl)                       | Jak2, Tyk2             | Lyn                       | Stat1,3,5                                    |
| Epo, Pro                 | EpoR, ProlactinR                   | Jak2                   | Src Family                | Stat5 (mainly Stat5a)                        |
| Interferon<br>(IFNα/β)   | IFNAR1+IFNAR2                      | Jak1, Tyk2             | Lck                       | Predominant: Stat1,2<br>Secondary: Stat3,4,5 |
| IFN-γ                    | IFN-γR1+IFN-γR2                    | Jak1, Jak2             | Hck, Lyn                  | Stat1                                        |
| IL-10                    | IL-10Ra+ IL-10Rß                   | Jak1, Tyk2             | not determined            | Stat1,3,5                                    |
| TLSP                     | TLSPR and IL-7R                    | Jak1,<br>possibly Jak2 | not determined            | Stat3,5                                      |
| EGF                      | EGFR                               | Jak1                   | EGFR. Src                 | Stat1.3.5                                    |
| PDGF                     | PDGFR                              | Jak1,2                 | PDGFR, Src                | Stat1,3,5                                    |
|                          |                                    |                        |                           |                                              |

007 0040 Cell Cisseline Teels

### Jak and Cytokine Receptor

The Jak and Cytokine Receptor Table lists mutations found in various cancers, along with the corresponding references.

|                                         |                                | © 2007–2013 Cell Sig                             | naling Technology, Inc. |
|-----------------------------------------|--------------------------------|--------------------------------------------------|-------------------------|
| Jak Mutants                             | Cytokine Receptor              | Disease                                          | References              |
| Jak2 V617F                              | EpoR, TpoR (MPL), G-CSFR       | Myeloproliferative neoplasms (MNPs), PV, ET, PMF | 1–5                     |
| Jak2 K539L / exon 12 mutants            | EpoR                           | MNP: PV                                          | 6                       |
| Jak2 T875N                              | undetermined                   | AML (AMKL)                                       | 7                       |
| Jak3 A572V                              | undetermined                   | AML (AMKL) (cell lines)                          | 8                       |
| Jak1 V658F / Jak1 A634D / R879H / R724S | IL2R, IL9R, other undetermined | T-ALL                                            | 9,10                    |
| Jak1 R683G/S Jak2 AIREED                | TLSPR                          | Pediatric and Down syndrome ALL                  | 11–15                   |
|                                         |                                |                                                  |                         |
| Receptor Mutants                        | Cytokine Receptor              | Disease                                          | References              |
| TpoR W515L/K/A                          | Jak2                           | MPNs: ET, PMF                                    | 16–18                   |
| TpoR S505N                              |                                |                                                  | 19                      |
| TpoR S487A                              |                                |                                                  | 20                      |
| TLSPR F232S / TLSPR translocations      | Jak2 R683 mutants              | Pediatric and Down syndrome ALL                  | 13, 21–23               |

References: (1) James, C. et al. (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434, 1144–1148. | (2) Baxter, E.J. et al. (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365, 1054–1061. | (3) Kralovics, R. et al. (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 352, 1779–1790. 4) (4) Levine, R.L. et al. (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7, 387–397. (5) Vainchenker, W. et al. (2008) JAKs in pathology: role of Janus kinases in hematopoietic malignancies and immunodeficiencies. Semin. Cell Dev. Biol. 19, 385–393. 6 (6) Scott, L.M. et al. (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N. Engl. J. Med. 356, 459–468. | (7) Mercher, T. et al. (2006) JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. Blood 108, 2770–2779. 8 (8) Walters, D.K. et al. (2006) Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 10, 65–75. 9 (9) Flex, E. et al. (2008) Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J. Exp. Med. 205, 751–758. | (10) Jeong, E.G. et al. (2008) Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers. Clin. Cancer Res. 14, 3716–3721. (11) Malinge, S. et al. (2007) Novel activating JAK2 mutation in a patient with Down syndrome and B-cell precursor acute lymphoblastic leukemia. Blood 109, 2202–2204. (12) Mullighan, C.G. et al. (2009) JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. U.S.A. 106, 9414–9418. (13) Mullighan, C.G. et al. (2009) Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat. Genet. 41, 1243-1246. (14) Bercovich D, et al. (2008) Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down's syndrome. Lancet 372, 1484–1492. (15) Kearney, L. et al. (2009) Specific JAK2 mutation (JAK2R683) and multiple gene deletions in Down syndrome acute lymphoblastic leukemia. Blood 113, 646–648. (16) Pikman, Y. et al. (2006) MPLW515L is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia. PLoS Med. 3, e270. | (17) Pardanani, A.D. et al. (2006) MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 108, 3472–3476. (18) Pecquet, C. et al. (2010) Induction of myeloproliferative disorder and myelofibrosis by thrombopoietin receptor W515 mutants is mediadd by cytosolic tyrosine 112 of the receptor. Blood 115, 1037–1047. [10] bing, J. et al. (2004) Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood 103, 4198–4200. [20] Malinge, S. et al. (2004) Activating mutations in human acute megakaryoblastic leukemia. Blood 112, 4220–4226. [21] Russell, L.J. et al. (2009) Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood 114, 2688–2698. | (22) Chapiro, E. et al. (2010) Activating mutation in the TSLPR gene in B-cell precursor lymphoblastic leukemia. Leukemia 24, 642-645. | (23) Hertzberg, L. et al. (2010) Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group. Blood 115, 1006–1017.

Direct Stimulatory Modification

- Direct Inhibitory Modification

- - - Tentative Inhibitory Modification

Transcriptional Stimulation Transcriptional Inhibition

![](_page_29_Picture_14.jpeg)

Joining of Subunits ----> Translocation Separation of Subunits or Cleavage Products

### Jak/Stat Signaling: IL-6 Receptor Family

![](_page_30_Figure_2.jpeg)

0 2002 - 2015 Cell Signaling Technology, In

Jaks and Stats are critical components of many cytokine receptor systems, regulating growth, survival, differentiation, and pathogen resistance. An example of these pathways is shown for the L-6 (or gpt130) tamily of receptors, which computate B cell differentiation, plasmacytogenesis, and the acute phase maction. Cytokine binding induces receptor dimerization, activating the associated Jaks, which phespherylate themselves and the receptor. The phosphorylated sites on the receptor and Jaks serve as docking sites for the SH2-containing State, such as Stats, and for SH2-containing proteins and adapters that link the receptor to MAP kinase, PI3K044, and other celular pathways.

Phosphorylated Stats dimerize and translocate into the nucleus to regulate target gene transcription. Members of the suppressor of cytokine signaling (SOCS) tarnily dampen receptor signaling via homologous or heterologous feedback regulation. Jaks or Stats can also participate in signaling through other receptor classes, as outlined in the Jak/Stat Ullization Table. Researchers have found Stat3 and Stat5 to be constitutively activated by tyrosine kinases other than Jaks in several solid tarrors.

The Jak/Stat pathway mediates the effects of cytokines, like crythropoietin, thrombopoietin, and G-CSF, which are protein drugs for the treatment of anemia, thrombocytopenia, and neutropenia, respectively. The pathway also mediates signaling by interferons, which are used as artivinal and antiproliferative agents.

Researchers have found that dysregulated cytokine signaling contributes to cancer. Aberrant IL-6 signaling contributes to the pathogenesis of autoimmune diseases, inflammation, and cancers such as prostate cancer and multiple myeloma. Jak inhibitors currently are being tasted in models of multiple myeloma. Stat3 can act as an encogene and is constitutively active in many turners. Crosstalk between cytokine signaling ad EEFH family members is seen in some cancer calls.

Activating Jak mutations are major noiscular events in human hematological malignancies. Researchers have found a unique scenarie mutation in the Juk? pseudokinase domain (VE17F) that commonly occurs in polycythemia wara, essential thrombocythemia, and idiopathic myelofibosis. This mutation results in the pathelogic activation Juk2, associated with secondors for erythropoietin, thrombopoietin, and G-CSF, which control erythroid, megakaryocytic, and granulocytic prolifection and differentiation. Researchers have also found somatic acquired gain-of-function mutations in Jak1 have been discovered in adult T cell acute lympholiastic leukemia. Somatic activating mutations in Jak1, have been discovered in adult T cell acute in pediatric acute lympholiastic leukemia (JLL). Furthermore, Jak2 mutations have been detected around in pediatric acute lympholiastic leukemia (JLL). Furthermore, Jak2 mutations have been detected around in pediatric acute lympholiastic leukemia (JLL). Furthermore, Jak2 mutations have been detected around pseudokinase domain R683 (R6850 or destaFREED) in Down synchrone childhood B-ALL and pediatric B-ALL.

#### For selected reviews see www.cellsignal.com

We would like to thank Prof. Status Constantinescu, Ludwig Institute for Cancer Research, Brussels, Belgium for contributing to this diagram

# **Antibody Validation**

at Cell Signaling Technology

Scientists at Cell Signaling Technology follow a stringent *validation protocol*, using a combination of several approaches and applications, to provide you with the highest quality antibodies. This ensures credible and reproducible results with the least expenditure of your time, samples and reagents.

- Testing in a number of applications
- Verifying specificity and reproducibility
- Identifying optimal conditions

To learn more about what validation means at Cell Signaling Technology visit www.cellsignal.com

#### Side by side comparison of new lot with previous lots

| Lot 7: 8/1/2002<br>Lot 8: 7/23/2003<br>Lot 9: 2/12/2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -    | -     | -     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|
| Lot 9: 2/12/2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ξ    | -     |       |
| Lot 8: 7/23/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -    |       | _     |
| Lot 9: 2/12/2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -    | -     | -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |
| Lot 10: 4/7/2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -    | -     | -     |
| 1; C2C12 cells +losalia<br>(100 nM for 10 min.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | -     | -     |
| 2: C2C12 cells, universited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |       |       |
| 1 unit / 1 u | Late | Latio | LH 10 |

#### Verification of specificity using known target activators and inhibitors

resp phospho-Ek phospho-Ek (RuA (DuA (LSputto (Int)) (LSputto (Int))

Kinaee
Phosphatae

![](_page_30_Picture_24.jpeg)

![](_page_30_Picture_25.jpeg)

![](_page_30_Picture_26.jpeg)

![](_page_30_Picture_27.jpeg)

![](_page_31_Figure_1.jpeg)

### NF-KB Signaling

Nuclear factor+x8 (NF-x8)/Rel proteins include NF-x82 p52/p100, NF-x81 p50/p105. c-Rel. RelA/bE5, and RelE. These proteins function as climeric transcription factors that control genes regulating a broad range of biological processes including innate and adaptive immunity, inflammation, stress responses, B cell development, and lymphoid organogenesis. In the classical (or canonical) pathway, NF+xB/Rel proteins are bound and inhibited by Ix8 proteins. Proinflammatory cytokines, LPS, growth factors, and artigen receptors activate an IKK complex (IKK), IKKa, and NEMO(, which phosphorylates IkB proteins. Phosphorylation of IxB leads to its ubiquitination and protezormal degradation. tracing NF+45Ral complexes. Active NF+48/Rel complexes are further activated by phosphorelation and translocate to the nucleus where, either alone or in combination with other transcription factor families including AP-1, Ets, and Stat, they induce target gene expression. In the alternative (or noncanonical) NF-x8 pathway, NF-x82 p100/ RelB complexes are inactive in the cytoplasm. Signaling through a subset of receptors, including LTBR, CD40, and BR3, activates the kinase NK, which in turn activates IKKs complexes that phosphorylate C-terminal residues in NF-x82 p100. Phosphorylation of NF-kB2 p100 leads to its ubiquitination and proteasonial processing to NF-kB2 p52, creating transcriptionally competent NF+x8 p52/Rel8 complexes that translocate to the nucleus and induce target gene expression. Only a subset of NF-xB agonists and target genes are shown here.

Select Reviews: Glimora, T.D. (2006) Rel/NE-x8 Xarsoription Factors www.rl-kb. org. | Hayden, M.S. and Ghosh, S. (2012) Genes Dev. 25, 203–234. | Perkins, N.D. (2012) Nat. Rev. Cancer. 12, 121–132. | Razani, B., Reichardt, A.D., and Cheng, G. (2011) Introvool Rev. 244, 44–54. | Varhelst, K., Carpentier, I., and Bayaert, R. (2011) Opticide Growth Factor Rev. 22, 277–286.

We would like to thank Prot. Thomas D. Gilmone, Bastan University, Bastan, MA, for contributing to this diagram.

## Toll-like Receptor Signaling

Toll-like receptors (TURs) recognize distinct pathogen-associated molecular patterns and play a critical role in innate immune responses. They participate in the first line of defense against invading pathogens and play a significant role in inflammation, immune cell regulation, sunival, and proliferation. To date, 11 members of the TLR family have been identified, of which TLR1, TLR2, TLR4, TLR5, TLR6, and TLR11 are located on the cell surface and TLR3, TLR7, TLR8, and TLR9 are localized to the endosomal/lysonomal compartment. The activation of the TLR signaling pathway originates from the cytoplasmic ToWL-1 receptor (TIR) domain that associates with a TIR domain-containing adaptor, MyD88. Upon stimulation with ligands, MyD89 recruits L-1 receptor-associated kinase-4 (RAK-4) to TLRs through interaction of the death domains of both molecules. IRWK-1 is activated by phospharylation and associates with TRWF6, thereby activating the IKK complex and leading to activation of MAP kinases (JMK, p38 MVPK) and MF-xB. Tallip and IRVK-M interact with IRVK-1 and negatively regulate the TLR-mediated signaling pathways. Additional modes of regulation for these pathways include TRIF-dependent induction of TRAF6 signaling by RIP1 and negative regulation of TIRAP-mediated downstream signaling by ST2L, TRMOSA, and SOCS1. Activation of MyD88-independent pathways occurs via TRIF and TRAF3, leading to recruitment of IRXe/TER1, phospharylation of IRF3, and expression of interferon-(). TIR domaincontaining adaptors such as TRAP; TRF; and TRAM regulate TLR-mediated signaling pathways by providing specificity for individual TLR signaling cascades. TRAF3 plays a critical role in the regulation of both MyD08-dependent and TRIF-dependent signaling via TRAF3 degradation, which activates MiC68-dependent signaling and suppresses TRIF-dependent signaling (and vice versa).

Select Reviews: Barton, G.M. and Kagan, J.C. (2009) Net. Rev. Immonol. 9, 535–542. [Basius, AL, and Beutler, B. (2019) Immunity/32, 305–315. [LI, X., Jiang, S., and Tapping, R.I. (2010). Gatokine 48, 1–9. [McGettrick, A.F. and O'Well, L.A. (2010). Corr. Gelo. Immunol. 22, 20–27. [Miggin, S.M. and O'Well, L.A. (2005) J. Leukoc. Biol. 80, 220–226. [Passes, C. and Mecchiltov, R. (2005) Adv. Exp. Med. Not. 560, 11–16. [Navel, T. and Akina, S. (2010). McGettrick, AI, 37–304.

We would like to thank Dr. Pranoti Mandrakar, University of Massachusetts Medical School, Wincester, MA, for comhibiding to this diagram.

![](_page_31_Figure_10.jpeg)

Direct Inhibitory Modification

Hullstep Inhibitory Modification

- - Tertative Inhibitory Modification

Transcriptional Stimulation

![](_page_31_Picture_15.jpeg)

Joining of Bubunits -----+ Translocation Separation of Subunits or Cleavage Products

![](_page_32_Figure_1.jpeg)

### T Cell Receptor Signaling

T Cell Receptor (TCR) activation promotes a number of signaling cascades that ultimately determine cell fate through regulating cytokine production, cell survival, proliferation, and differentiation. An early event in TCR activation is phosphonilation of immunoreceptor twosine-based activation motifs (TAMs) on the cytosolic side of the TCR/CDS complex by lymphocyte protein tyrosine kinase (Lok). The CD45 receptor tyrosine phosphatase modulates the phosphorylation and activation of Lok and other Src family tyrosine kinases, 2-chain associated protein kinase (Zap-70) is recruited to the TCR/CD3 complex where it becomes activated, promoting recruitment and phosphorylation of downstream adaptor or scattold proteins. Phosphorylation of SLP-76 by Zap-70 promotes recruitment. of Yav (a guarrine nucleotide exchange factor), the adaptor proteins NDK and GADS, and an inducible T cell kinase (Itk). Phosphorylation of phospholipase C (1 (PLC)(1) by Itk results in the hydrolysis of phosphaticlylinositol 4,5-bisphosphate (PIP2) to produce the second messengers diacylglycerol (DAG) and inositol trisphosphate (IP.). DAG activates FKC8 and the MAPK/Erk pathways, both promoting transcription factor NF-x8 activation. P, triggers the release of Ca<sup>2+</sup> from the ER, which promotes entry of estracelular Ca<sup>2+</sup> into cells through calcium release-activated Ca2+ (CRAD) channels. Dalcium-bound calmodulin (Ca<sup>11</sup>/CaM) activates the phosphatase calcineurin, which promotes IL-2 gene transcription through the transcription factor NEAT. Reedback regulation at several points within these pathways allows for different outcomes, depending on the cell type and environment. The incorporation of signals from additional cell surface receptors (such as CD28 or LFA-1) further regulates cellular response.

Select Reviews: Burbach, B.J., Medeiros, R.B., Mueller, K.L., and Shimizu, Y. (2007) Immunol. Rev. 218, 65-81. Cheng, J., Montecalico, A., and Kane, L.P. (2011). Instrumol. Res. 50, 113-117. Cronin, S.J. and Penninger, J.M. (2007) Instanci. Rev. 220, 151-168. Marsland, B.J. and Kapf, M. (2008) Dends invrunal. 29, 179-185. QL 0. and August, A. (2007) Sci. STAE pe39. Thoma. M. (2008) Nat. Rev. Involuted. 8, 495-500

We would the to thank Prof. Sankar Shosh, Columbia University, New York, NY for centributing to this allegram.

![](_page_32_Figure_6.jpeg)

## B Cell Receptor Signaling

The B cell antigen receptor (BCP) is composed of membrane immunoplobalin onlogmolecules and associated iga/log) (CD79a/CD79b) heterodimers (org). The mip subunits bind antigen, resulting in receptor appregation, while the e/B subunits transduce signals to the cell interior. BCR appregation rapidly activates the Src family kinases Lyn, Bik, and Fyri as well as the Syk and Btk tyrosine kinases. This initiates the formation of a 'signalosome' composed of the BCR, the aforementioned tyrosine kinases, adaptor proteins such as CD19 and BLNK, and signaling enzymes such as PLCp2, PD3K, and Nav. Signals enranating from the signalosome activate multiple signaling cascades that involve kinases, GTPases, and transcription factors. This results in changes in cell metabolism, gene expression, and cytoskeletal organization. The complexity of BCR signaling permits many distinct outcomes, including survival, tolerance (anergy) or apoptosia, proliferation, and differentiation into antibody-producing cells or memory 8 cells. The outcome of the response is determined by the maturation state of the cell, the nature of the antigen, the magnitude and duration of BCR signaling, and signals from other receptors such as CD40, the IL-21 receptor, and BAFF-R. Many other transmembrane proteins, some of which are receptors, modulate specific elements of BCR signaling. A few of these, including CD45, CD19, CD22, PIR-8, and Fc;RIB1 (CD32), are indicated here in yellow. The magnitude and duration of BCR signaling are limited by negative feedback loops including those involving the Lys/CD22/SHP-1 pathway, the Cbp/Cak pathway, SHP, Cbl, Dok-1, Dok-3, FoxRIB1, PIR-8, and internalization of the BCR. In vivo, 8 cells are often activated by antigen-preventing cells that capture antigens and display them on their cell surface. Activation of B cells by such membrane-associated antigens requires BCR-induced cytoskeletal reorganization. Please refer to the diagrams for the PCK/Akt. signaling pathway, the NF+x8 signaling pathway, and the regulation of actin dynamics for more details about these pathways.

Select Reviews: Dal Porto, J.M., Gauld, S.B., Marrell, K.T., Mills, D., Pugh-Bernard, A.E., and Cambler, J. (2004) Mol. Immunol. 41, 599-613. Goodnow, C.C., Vinuesa. C.G., Randall, K.L., Maskay, F., and Brink, R. (2010) Nature Instrument 11, 681-688. Harwood, N.E. and Batista, F.D. (2008) inmonity 28, 609-619. Harwood, N.E. and Batista, F.D. (2010) Avvo. Rev. Instructori. 28, 185-210. Kurosaki, T., Shinohara, H., and Baba, Y. (2010) Annu. Rev. Intriunal. 28, 21-55.

We would like to thank Prof. Michael R. Gold, University of British Columbia, Vancouver, Bridish Columbia for comhibuting to this diagram.

![](_page_32_Picture_11.jpeg)

(Crase

![](_page_32_Picture_13.jpeg)

![](_page_32_Picture_14.jpeg)

![](_page_32_Picture_15.jpeg)

![](_page_32_Picture_16.jpeg)

![](_page_32_Picture_17.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

### Amyloid Plaque and Neurofibrillary Tangle Formation in Alzheimer's Disease

Alzheimer's disease is one of the most common neurodecenerative diseases worldwide Clinically, it is characterized by the presence of extracellular amyloid plaques and intracelular neurolibrillary tangles, resulting in neuronal dysfunction and cell death. Central to this discuss is the differential processing of the integral membrane protein APP (Amploid Precursor Protein) in the normal versus disease state. In the normal state, APP is initially cleaved by a secretase to generate sAPPs and a CB3 carboxyterminal tragment. The presence of sAPPo is associated with normal synaptic signaling and results in synaptic plasticity, learning and memory, emotional behaviors, and neuronal survival. In the disease state, APP is cleaved sequentially by 8-secretase and y-secretase to release an extracellular fragment called A640/42. This neurotoxic fragment treppently approaches and results in AB40/42 oligometization and plaque formation. AB40/42 approaction results in blocked ion channels, disruption of calcium homeostasis, mitochondrial poldative stress, impaired energy metabolism and abnormal ducose regulation, and ultimately neuronal cell death. Altheimer's disease is also characterized by the presence of neurolibrillary tangles. These tangles are the result of hyperphosphorelation of the microtubule-associated protein Tau. GSK-38 and CDK5 are the kinases primarily responsible for phosphorylation of Tau, although other kinases such as PRC, PKA, and ERK2 are also involved. Hyperphosphorylation of Tau results in the dissociation of Tau from the microtubulo, leading to microtubule destabilization and oligomerization of the Tau protein within the cell. Neurofibrillary tangles form as a result of Tau oligomerization and lead to apoptosis of the neuron.

Select Reviews: Bossy-Websi, E., Schwarzenbacher, R., and Lipton, S.A. (2004) Nat. Med. 10, 2-9. Chen, J.X. and Yan, S.S. (2010) J. Altheimers Dir. 2, 5569-S57B. Claeysen, S., Cochet, M., Donneger, R., Dumuis, A., Bookaert, J., and Giannoni, P. (2012) Call. Signal. 24, 1831-1840. Marcus, J.N. and Schachter, J. (2011) J. Neurogenet 25, 127-133. Müller, W.E., Edvert, A., Kurz, C., Edvert, G.P., and Leurier, K. (2010) Mol. Neurobiol. 41, 159-171. Nizzari, M., Thellung, S., Cossaro, A., Villa, V., Pagano, A., Porole, C., Russo, C., and Florio T. (2012) J. Rokov. 2012, 187297. Thinakaran, B. and Kao, E.H. (2008) J. Biol. Chevr. 283, 29615-29619.

We weald like to thank Prof. Christopher Phiel, University of Colorado-Derver, and Prof. Julf Kuret, The Ohio State University, Columbus, OH for combiliating to Itils diagram.

### Dopamine Signaling in Parkinson's Disease

Parkinson's disease is the second most prevalent neurodegenerative disorder. Clinically, this disease is characterized by bradykinesia, resting tremore, and rigidity due to loss of doparninergic neurons within the substania riigra section of the ventral midbrain. In the normal state, release of the neurotransmitter departine in the presynaptic neuron results in signaling in the portrynaptic neuron through D1- and D2-type dopamine receptors. D1 receptors signal through G proteins to activate adenplate cyclase, causing cAMP formation and activation of PKA. D2-type receptors block this signaling by inhibiting adenylate cyclase. Parkinson's disease can occur through both genetic mutation (familial) and exposure to environmental and neurotoxins (sporadic). Recessively inherited loss-of-function mutations in parkin, DJ-1, and PIWK1 cause mitschondrial dysfunction and accumulation of reactive oxidative species (ROS), whereas dominantly inherited missense mutations in o-synuclein and LRRK2 may affect protein degradation pathways, leading to protein appregation and accumulation of Lewy bodies. Mitschondrial dysfunction and protein aggregation in departinengic reurons may be responsible for their premature degeneration. Another common leature of the mutations in o-synuclein, parkin, DJ-1, PINK1, and LRRK2 is the impairment in depantine release and dopaminerpic neurotransmission, which may be an early pathogenic precursor prior to death of dopaminergic neurona. Exposure to environmental and reuratoxins can also cause mitochondrial functional impairment and release of ROS, leading to a number of cellular responses including apoptosis and distuction of protein degradation gathways. There is also an inflammatory component to this disease, resulting from activation of microplia that cause the release of inflammatory catokines and cell stress. This microglia, activation causes apoptosis via the JNK pathway and by blocking the Akt signaling pathway via REOD1

Select Reviews: Dauer, W. and Przedborski, S. (2003) Neuron 39, 889-909. Grasit, J.A. and Greengard, P. (2004) Arch. Neurol. 61, 641-644. | Patten, D.A., Germain, M., Kelly, M.A., and Slack, R.S. (2010) J. Alzheimers Dis. 20 Suppl 2, S357-367. Intal, Y. and Lu, B. (2011) Curr. Opin. Neurobiol. 21, 935–941. Springer, W. and Kalife, P.J. (2011) Astophagy 7, 266-278.

We would like to thank Prof. Jie Shen, Harvard Medical School, Boston, MA, for contributing to this diagram.

Direct Stimulatory Modification

- Direct Inhibitory Modification

 Multistep Stimulatory Modification 

+ Tentative Stimulatory Modification - - - Tentative Inhibitory Modification

Transcriptional Stimulation Transcriptional Inhibition

![](_page_33_Picture_17.jpeg)

Joining of Subunits ----- Translocation Separation of Subunits or Cleavage Products

![](_page_34_Figure_1.jpeg)

### Hippo Signaling

Hippo signaling is an evolutionarily conserved pathway that controls organ size by regulating cell proliferation, apoptosis, and stem cell self renewal. In addition, dysregulation of the Hippo pathway contributes to cancer development. Core to the Hippo pathway is a kinase cascade, wherein Mst1/2 (ortholog of Drosophila Hippo) kinases and Sav1 form a complex to phosphorylate and activate LATS1/2. LATS1/2 kinases in turn phosphorylate and inhibit the transcription co-activators YAP and TAZ, two major downstream effectors of the Hippo pathway. When dephosphorylated, YAP/ TAZ translocate into the nucleus and interact with TEAD1-4 and other transcription factors to induce expression of genes that promote cell proliferation and inhibit apoptosis. The Hippo pathway is involved in cell contact inhibition, and its activity is regulated at multiple levels: Mst1/2 and LATS1/2 are regulated by upstream molecules such as Merlin, KIBRA, RASSFs, and Ajuba; 14-3-3, a-catenin, AMOT, and ZO-2 retain YAP/ TAZ in the cytoplasm, adherens junctions, or tight junctions by binding; Mst1/2 and YAP/ TAZ phosphorylation and activity are modulated by phosphatases; Lats1/2 and YAP/TAZ stability are regulated by protein ubiquitination; and LATS1/2 activity is also regulated by the cytoskeleton. Despite extensive study of the Hippo pathway in the past decade, the exact nature of extracellular signals and membrane receptors regulating the Hippo pathway remains elusive

Select Reviews: Badouel, C. and McNeill, H. (2011) SnapShot: The hippo signaling pathway. *Cell* 145, 481–484. [ Genevet, A. and Tapon, N. (2011) *Biochem. J.* 436, 213–224. ] Pan, D. (2010) *Dev. Cell* 19, 491-505. ] Sudol, M. and Harvey, K.F. (2010) *Trends Biochem. Sci.* 35, 627–633. ] Zhao, B., Li, L., Lei, Q., and Guan, K.L. (2010) *Genes Dev.* 24, 862–874. ] Zhao, B., Tumaneng, K., and Guan, K.L. (2011) *Nat. Cell Biol.* 13, 877–883.

We would like to thank Prof. Kun-Liang Guan, University of California, San Diego, for contributing to this diagram.

![](_page_34_Figure_6.jpeg)

Caspase

Receptor

Enzyme

pro-survival

Transcription Factor

pro-apoptotic

Kinase

Phosphatase

### ESC Pluripotency and Differentiation

Two distinguishing characteristics of embryonic stem cells (ESCs) are pluripotency and their ability to self renew. These traits, which allow ESCs to grow into any cell type in the body and to divide continuously in the undifferentiated state, are regulated by a number of cell signaling pathways. In human ESCs (hESCs), the predominant signaling pathways involved in pluripotency and self renewal are TGF- $\beta$ , which signals through Smad2/3/4, and FGFR, which activates the MAPK and Akt pathways. The Wnt pathway also promotes pluripotency, although this may occur through a non-canonical mechanism involving a balance between the transcriptional activator TCF1 and the repressor TCF3. Signaling through these pathways results in the expression and activation of three key transcription factors: Oct-4, Sox2, and Nanog. These transcription factors activate gene expression of ESC-specific genes, regulate their own expression, and also serve as hESCs markers. Other markers used to identify hESCs are the cell surface glycolipid SSEA3/4, and glycoproteins TRA-1-60 and TRA-1-81. Loss of pluripotency results in differentiation into primordial germ cells or one of the three primary germ layers: endoderm, mesoderm, or ectoderm. One of the primary signaling pathways responsible for this process is the BMP pathway, which uses Smad/1/5/8 to promote differentiation by both inhibiting expression of Nanog, as well as activating the expression of differentiation-specific genes. Notch also plays a role in this process through the notch intracellular domain (NICD). As differentiation continues, cells from each primary germ layer further differentiate along lineage-specific pathways.

Select Reviews: Bilic, J. and Izpisua Belmonte, J.C. (2012) *Stem Cells* 30, 33–41. Boiani, M. and Schöler, H.R. (2005) *Nat. Rev. Mol. Cell Biol.* 6, 872–884. Guenther, M.G. (2011) *Epigenomics* 3, 323–343. Heng, J.C., Orlov, Y.L., and Ng, H.H. (2010) *Cold Spring Harb. Symp. Quant. Biol.* 75, 237–244. Pan, G. and Thomson, J.A. (2007) *Cell Res.* 17, 42–49. Pei, D. (2009) *J. Biol. Chem.* 284, 3365–3369. Welham, M.J., Kingham, E., Sanchez-Ripoll, Y., Kumpfmueller, B., Storm, M., and Bone, H. (2011) *Biochem. Soc. Trans.* 39, 674–678.

GAP/GEF

GTPase

![](_page_34_Picture_11.jpeg)

![](_page_35_Figure_1.jpeg)

![](_page_35_Figure_2.jpeg)

### Wnt/β-Catenin Signaling

The conserved Wnt/B-Catenin pathway regulates stem cell pluripotency and cell fate decisions during development. This developmental cascade integrates signals from other pathways, including retinoic acid, FGF, TGF-B, and BMP, within different cell types and tissues. The Wnt ligand is a secreted glycoprotein that binds to Frizzled receptors, which triggers displacement of the multifunctional kinase GSK-36 from a regulatory APC/ Axin/GSK-3β-complex. In the absence of Wnt-signal (Off-state), β-catenin, an integral E-cadherin cell-cell adhesion adaptor protein and transcriptional co-regulator, is targeted by coordinated phosphorylation by CK1 and the APC/Axin/GSK-3 $\beta$ -complex leading to its ubiquitination and proteasomal degradation through the  $\beta$ -TrCP/SKP pathway. In the presence of Wnt ligand (On-state), the co-receptor LRP5/6 is brought in complex with Wnt-bound Frizzled. This leads to activation of Dishevelled (Dvl) by sequential phosphorylation, poly-ubiquitination, and polymerization, which displaces GSK-3ß from APC/Axin through an unclear mechanism that may involve substrate trapping and/ or endosome sequestration. The transcriptional effects of Wnt ligand is mediated via Rac1-dependent nuclear translocation of  $\beta$ -catenin and the subsequent recruitment of LEF/ TCF DNA-binding factors as co-activators for transcription, acting partly by displacing Groucho-HDAC co-repressors. Additionally,  $\beta$ -catenin has also been shown to cooperate with the homeodomain factor Prop1 in context-dependent activation as well as repression complexes. Importantly, researchers have found  $\beta$ -catenin point mutations in human tumors that prevent GSK-3ß phosphorylation and thus lead to its aberrant accumulation. E-cadherin, APC, and Axin mutations have also been documented in tumor samples, underscoring the deregulation of this pathway in cancer. Furthermore, GSK-3ß is involved in glycogen metabolism and other signaling pathways, which has made its inhibition relevant to diabetes and neurodegenerative disorders.

Select Reviews: Angers, S. and Moon, R.T. (2009) Nat. Rev. Mol. Cell Biol. 10, 468-477. Clevers, H. and Nusse, R. (2012) Cell 149, 1192-1205. Fearon, E.R. (2009) Cancer Cell 16, 366-368. MacDonald, B.T., Tamai, K., and He, X. (2009) Dev. Cell 17, 9-26. Metcalfe, C, and Bienz, M, (2011) J. Cell Sci, 124, 3537-3544 Mosimann, C., Hausmann, G., and Basler, K. (2009) Nat. Rev. Mol. Cell Biol. 10, 276-286. | Nusse, R. (2010) The Wnt Homepage. http://www.stanford.edu/group/ nusselab/cgi-bin/wnt/. Petersen, C.P. and Reddien, P.W. (2009) Cell 139, 1056–1068. Sokol, S.Y. (2011) Development 138, 4341–4350. van Amerongen, R. and Nusse, R. (2009) Development 136, 3205-3214.

We would like to thank Dr. Hans Widlund, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, for contributing to this diagram.

## Notch Signaling

Notch signaling is an evolutionarily conserved pathway in multicellular organisms that regulates cell-fate determination during development and maintains adult tissue homeostasis. The Notch pathway mediates juxtacrine cellular signaling wherein both the signal sending and receiving cells are affected through ligand-receptor crosstalk by which an array of cell fate decisions in neuronal, cardiac, immune, and endocrine development are regulated. Notch receptors are single-pass transmembrane proteins composed of functional extracellular (NECD), transmembrane (TM), and intracellular (NICD) domains. Notch receptors are processed in the ER and Golgi within the signal-receiving cell through cleavage and glycosylation, generating a Ca2+-stabilized heterodimer composed of NECD noncovalently attached to the TM-NICD inserted in the membrane (S1 cleavage). The processed receptor is then endosome-transported to the plasma membrane to enable ligand binding in a manner regulated by Deltex and inhibited by NUMB. In mammalian signal-sending cells, members of the Delta-like (DLL1, DLL3, DLL4) and the Jagged (JAG1, JAG2) families serve as ligands for Notch signaling receptors. Upon ligand binding, the NECD is cleaved away (S2 cleavage) from the TM-NICD domain by TACE (TNF-a ADAM metalloprotease converting enzyme). The NECD remains bound to the ligand and this complex undergoes endocytosis/recycling within the signal-sending cell in a manner dependent on ubiquitination by Mib. In the signal-receiving cell, y-secretase (also involved in Alzheimer's disease) releases the NICD from the TM (S3 cleavage), which allows for nuclear translocation where it associates with the CSL (CBF1/Su(H)/Lag-1) transcription factor complex, resulting in subsequent activation of the canonical Notch target genes: Myc, p21, and the HES-family members. The Notch signaling pathway has spurred interest for pharmacological intervention due to its connection to human disease. Importantly, researchers have found Notch receptor activating mutations leading to nuclear accumulation of NICD are common in adult T cell acute lymphoblastic leukemia and lymphoma. In addition, loss-of-function Notch receptor and ligand mutations are implicated in several disorders, including Alagille syndrome and CADASIL, an autosomal dominant form of cerebral arteriopathy.

Select Reviews: Ables, J.L., Breunig, J.J., Eisch, A.J., and Rakic, P. (2010) Nat. Rev. Neurosci. 12, 269–283. Andersson, E.R., Sandberg, R., and Lendahl, U. (2011) Development 138, 3593-3612. Aster, J.C., Blacklow, S.C., and Pear, W.S. (2010) J. Pathol. 223, 262–273. Bai, G. and Pfaff, S.L. (2011) Neuron 72, 9–21. de la Pompa, J.L. and Epstein, J.A. (2012) Dev. Cell 22, 244-254. Ranganathan, P., Weaver, K.L., and Capobianco, A.J. (2011) Nat. Rev. Cancer 11, 338-351. Weinmaster, G. and Fischer, J.A. (2011) Dev. Cell 21, 134–144. Vuan, J.S., Kousis, P.C., Suliman, S. Visan, I., and Guidos, C.J. (2010) Annu. Rev. Immunol. 28, 343-365.

We would like to thank Dr. Hans Widlund, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, for contributing to this diagram.

Direct Stimulatory Modification - Direct Inhibitory Modification 

- - - Tentative Inhibitory Modification

Transcriptional Stimulation Transcriptional Inhibition

![](_page_35_Picture_14.jpeg)

![](_page_36_Figure_0.jpeg)

![](_page_36_Figure_1.jpeg)

![](_page_36_Figure_2.jpeg)

Transcription Factor

pro-apoptotic

Kinase

Phosphatase

### **Hedgehog Signaling**

The evolutionarily conserved Hedgehog pathway plays a critical role in a time and position-dependent fashion during development by regulating patterning and maintenance of proliferative niches. Proper secretion and gradient diffusion of the vertebrate Hedgehog-family ligands, including Sonic, Desert, and Indian Hedgehog, all require autoprocessive cleavage as well as cholesterol and palmitate lipid modifications. In the receiving cell in the absence of Hedgehog ligand (off-state), the Patched receptor is associated with Smoothened, a G-coupled transmembrane protein, and prevents its membrane incorporation from endosomes. Further, the Hedgehog Off-state allows SuFu and COS2 (Kif7 in vertebrates) to sequester the microtubule-bound pool of the Gli transcription factor within the primary cilium, thereby allowing its phosphorylation by PKA, CK1, and GSK-3. This results in  $\beta$ -TrCP-mediated degradation of Gli activators (Gli1 and Gli2 in mammals) or the generation of repressor-Gli (Gli3 or truncated-Ci in Drosophila) in the conserved pathway that collectively leads to repression of Hedgehog target genes. In the on-state, Hedgehog binding sequesters the co-receptor lhog to Patched that permits  $\beta$ -arrestin to freely facilitate incorporation of Smoothened to the primary cilium membrane. In the primary cilium, Smoothened's associated G protein activity relieves Gli from microtubule association, enables nuclear translocation, and activation of Hedgehog/Gli target genes including Cyclin D, Cyclin E, Myc, and Patched. Consequently, the conserved action of Hedgehog ligands is to switch the Gli factors from transcriptional repressors into activators and allow for well-coordinated bursts of transcriptional events. Loss-of-function Patched mutations are associated with Gorlin syndrome and predisposes to basal cell carcinomas, medulloblastomas, and rhabdomyosarcomas. In addition, researchers have found activating mutations of Smoothened in basal cell carcinomas and rare SuFu mutations in medulloblastomas, underscoring the involvement of this developmental pathway in cancer; consequently, significant interest is focused on targeting this pathway for therapeutic purposes.

Select Reviews: Beachy, P.A., Hymowitz, S.G., Lazarus, R.A., Leahy, D.J., and Siebold, C. (2010) *Genes Dev.* 24, 2001–2012. [Eaton, S. (2008) *Nat. Rev. Mol. Cell Biol.* 9, 437–445. ] Hui, C.C. and Angers, S. (2011) *Annu. Rev. Cell Dev. Biol.* 27, 513–537. ] Ingham, P.W., Nakano, Y., and Seger, C. (2011) *Nat. Rev. Genet.* 12, 393–406. ] Ng, J.M. and Curran, T. (2011) *Nat. Rev. Cancer* 11, 493–501. ] Oh, E.C. and Katsanis, N. (2012) *Development* 139, 443–448. ] Theunissen, J.W. and de Sauvage, F.J. (2009) *Cancer Res.* 69, 6007–6010. ] Wilson, C.W. and Chuang, P.T. (2010) *Development* 137, 2079–2094.

We would like to thank Dr. Hans Widlund, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, for contributing to this diagram.

## TGF-β Signaling

Transforming growth factor- $\beta$  (TGF- $\beta$ ) superfamily signaling plays a critical role in the regulation of cell growth, differentiation, and development in a wide range of biological systems. In general, signaling is initiated with ligand-induced oligomerization of serine/ threonine receptor kinases and phosphorylation of the cytoplasmic signaling molecules Smad2 and Smad3 for the TGF- $\beta$ /activin pathway, or Smad1/5/8 for the bone morphogenetic protein (BMP) pathway. Carboxy-terminal phosphorylation of Smads by activated receptors results in their partnering with the common signaling transducer Smad4, and translocation to the nucleus. Activated Smads regulate diverse biological effects by partnering with transcription factors resulting in cell-state specific modulation of transcription. The activin and BMP pathways are themselves attenuated by MAPK signaling at a number of levels, while the expression of inhibitory Smads (I-Smads) 6 and 7 is induced by both activin/TGF-β and BMP signaling as part of a negative feedback loop. In certain contexts, TGF-β signaling can also affect Smad-independent pathways, including Erk, SAPK/JNK, and p38 MAPK pathways. Activation of Smad-independent pathways through TGF-B signaling is also common. Rho GTPase (RhoA) activates downstream target proteins, such as mDia and ROCK, to prompt rearrangement of the cytoskeletal elements associated with cell spreading, cell growth regulation, and cytokinesis. Cdc42/Rac regulates cell adhesion through downstream effector kinases PAK, PKC, and c-Abl following TGF- $\beta$  activation.

Select Reviews: Herpin, A. and Cunningham, C. (2007) *FEBS J.* 274, 2977–2985.
 Horbelt, D., Denkis, A., and Knaus, P. (2012) *Int. J. Biochem. Cell Biol.* 44, 469–474.
 Ikushima, H. and Miyazono, K. (2010) *Nat. Rev. Cancer* 10, 415–424.
 Kitisin, K., Saha, T., Blake, T., Golestaneh, N., Deng, M., Kim, C., Tang, Y., Shetty, K., Mishra, B., and Mishra, L. (2007) *Sci. STKE* cm1.
 Meulmeester, E. and ten Dijke, P. (2011) *J. Pathol.* 223, 205–218.
 Schmierer, B. and Hill, C.S. (2007) *Nat. Rev. Mol. Cell Biol.* 8, 970–982.
 Verheyen, E.M. (2007) *Dev. Cell* 13, 755–756.
 Xiao, Y.T., Xiang, L.X., and Shao, J.Z. (2007) *Biochem. Biophys. Res. Commun.* 362, 550–553.

We would like to thank Luuk Hawinkels and Prof. Peter ten Dijke, Leiden University Medical Center, Leiden, The Netherlands, for contributing to this diagram.

![](_page_36_Picture_11.jpeg)

![](_page_36_Picture_12.jpeg)

![](_page_36_Picture_13.jpeg)

![](_page_36_Picture_14.jpeg)

![](_page_36_Picture_15.jpeg)

![](_page_37_Figure_1.jpeg)

![](_page_37_Figure_2.jpeg)

### **Regulation of Actin Dynamics**

Signaling to the cytoskeleton through G protein-coupled receptors (GPCRs), integrins, receptor tyrosine kinases (RTKs), and numerous other specialized receptors, such as the semaphorin 1a receptor PlexinA, can lead to diverse effects on cell activity, including changes in cell shape, migration, proliferation, and survival. Integrins, in conjuction with other components of focal adhesion complexes, serve as the link between the extracellular matrix and cytoskeleton in many cell types. Integrin activation leads to activation of focal adhesion kinase (FAK) and Src kinase, resulting in phosphorylation of other FA components such as paxillin and the Crk-associated substrate p130 Cas, as well as the recruitment of signaling adapter proteins.

Intracellular regulation of the cell's response to external cues occurs through a large number of signaling cascades that include the Rho family of small GTPases (Rho, Rac, and Cdc42) and their activators, guanine nucleotide exchange factors (GEFs), their downstream protein kinase effectors, including Rho-kinase/ROCK and p21 activated kinase (PAK), as well as through direct binding of the GTPases to several actin regulatory proteins, such as cortactin, mDia, WAVE, and WASP. These cascades converge on proteins that directly regulate the behavior and organization of the actin cytoskeleton, including actin interacting regulatory proteins such as cofilin, Arp2/3 complex, Ena/ VASP, forminins, profilin, and gelsolin. Signaling through different pathways can lead to the formation of distinct actin-dependent structures whose coordinated assembly, disassembly is important for directed cell migration and other cellular behaviors. Migration is also regulated by signaling to myosin, which participates in leading edge actin dynamics and enables retraction of the rear of the cells. Tropomyosins stabilize F-actin by preventing binding of severing and dynamizing factors. Some tropomyosins may also enhance filament dynamics. Dynamic actin is required for most cellular actindependent processes; inhibiting actin assembly and preventing actin disassembly are equally inhibitory to most behaviors.

Aberrant control of cytoskeletal signaling, which can result in a disconnection between extracellular stimuli and cellular responses, is often seen in immune pathologies, developmental defects, and cancer.

Select Reviews: Bernstein, B.W. and Bamburg, J.R. (2010) *Trends Cell Biol.* 20, 187–195. Lee, S.H. and Dominguez, R. (2010) *Mol. Cells* 29, 311–325. Levayer, R. and Lecuit, T. (2012) *Trends Cell Biol.* 22, 61–81. Poukkula, M., Kremneva, E., Serlachius, M., and Lappalainen, P. (2011) *Cytaskeleton (Hoboken)* 68, 471–490. Ridley, AJ. (2011) *Cell* 145, 1012–1022. Rottner, K. and Stradal, T.E. (2011) *Curr. Opin. Cell Biol.* 23, 569–578.

We would like to thank Prof. James Bamburg, Colorado State University, for updates to the Regulation of Actin Dynamics and the Regulation of Microtubule Dynamics pathways.

### Regulation of Microtubule Dynamics

Microtubules are required for the establishment of cell polarity, polarized migration of cells, intracellular vesicle transport, and chromosomal segregation in mitosis. Microtubules (MTs) are nonequilibrium polymers of  $\alpha/\beta$ -tubulin heterodimers, in which GTP hydrolysis on the  $\beta$ -tubulin subunit occurs following assembly. Most microtubules are nucleated from organizing centers. The most prevalent microtubule behavior is dynamic instability, a process of slow plus end growth coupled with rapid depolymerization ("catastrophe") and subsequent rescue. Although microtubule minus ends show dynamic instability, albeit at a lower rate than the plus ends, the minus ends are usually capped and anchored at MT organizing centers and thus often do not participate in microtubule dynamics.

Maintaining a balance between dynamically unstable and stable microtubules is regulated in large part by proteins that bind either tubulin dimers or assembled microtubules. Proteins that bind tubulin dimers include stathmin, which sequesters tubulin and enhances MT dynamics by increasing catastrophe frequency, and collapsin response mediator protein (CRMP2), which increases MT growth rate by promoting addition of tubulin dimers onto microtubule plus ends. Other proteins that associate with assembled MTs include those that bundle MTs (e.g. MAP1c), those that stabilize MTs (e.g. tau), and those that maintain MTs in a dynamic state (MAP1b). A major signaling pathway that regulates MT dynamics involves GSK-3 $\beta$ , a kinase typically active under basal growth conditions but locally inactive in response to signals that enhance MT growth and dynamics.

Tubulin undergoes several post-translational modifications such as acetylation, polyglutamylation, and poly-glycylation, which have been shown to alter the association with certain MT motors as well as other proteins that can affect MT stability and dynamics.

#### For selected reviews see www.cellsignal.com

We would like to thank Prof. James Bamburg, Colorado State University, for updates to the Regulation of Actin Dynamics and the Regulation of Microtubule Dynamics pathways.

-----> Direct Stimulatory Modification

Direct Inhibitory Modification

→ Multistep Stimulatory Modification -→ Multistep Inhibitory Modification -

— → Tentative Stimulatory Modification

Transcriptional Stimulation
Transcriptional Inhibition

![](_page_37_Picture_20.jpeg)

→ Joining of Subunits ----> Translocation ✓ Separation of Subunits or Cleavage Products

![](_page_38_Figure_0.jpeg)

relations pinctures that optimize an optimize and the structure of the st

Monomeric α-catenin binds  $\beta$ -catenin at adherens junctions and upon release forms α-catenin dimers that promote actin bundle formation. The transition from branched actin networks to bundled actin filaments correlates with the creation of mature, strong adherens junctions and a decrease in membrane lamellipodia. The connection between cell junctions and the cytoskeleton may be more dynamic than originally considered and may rely on multiple, weak associations between the cadherin-catenin complex and the actin cytoskeleton or rely on other membrane-associated proteins (i.e. nectin and afadin).

As with most dynamic cellular systems, a collection of kinases, phosphatases, and adaptor proteins regulate the activity and localization of a few key effector proteins. p120 caterini (δ-caterini) binds and stabilizes cadherin at the plasma membrane. Membranebound and cytosolic tyrosine kinases phosphorylate β-caterin at weak or nascent junctions, while phosphatases remove added phosphates from β-caterin and δ-caterin at established junctions. Rho family GTPases modulate the availability and activation state of caterins and other essential adherens proteins. Together, this collection of structural proteins, enzymes, and adaptor proteins create dynamic cell-cell junctions necessary for temporary associations during morphogenesis and maintains the integrity of complex tissues and structures following development.

Select Reviews: Baum, B. and Georgiou, M. (2011) *J. Cell Biol.* 192, 907–917. [ Citi, S., Spadaro, D., Schneider, Y., Stutz, J., and Pulimeno, P. (2011) *Mol. Membr. Biol.* 28, 427–444. ] Harris, T.J. and Tepass, U. (2010) *Nat. Rev. Mol. Cell Biol.* 11, 502–514. ] Niessen, C.M. and Gottardi, C.J. (2008) *Biochim. Biophys. Acta.* 1778, 562–571. ] Pieters, T., van Roy, F., and van Hengel, J. (2012) *Front Biosci.* 17, 1669– 1694. ] Yonemura, S. (2011) *Curr. Opin. Cell Biol.* 23, 515–522.

We would like to thank Prof. Rakesh Kumar of The George Washington University, Washington, D.C. for reviewing this diagram.

#### ACCESSION CONTRACTOR CONT 0000000 Turnor Cell Akt - PI3K mTOF PHDs - ОН E3 Ligase Compl Rbx1 TCEB2 TCEB1 Cul2 HIF10 VHL он HIF16 HIF1a Erk1/2 Nucleus Cytoplasm MEK1/2 - Ras HIF10 Growth Factors HIE10 HIF1 Degradation HRE Targ Cytokines ECM Proteases MMP Extracellular Cox2 ٠ PAI-1 Matrix SLIT VEG RORC PDGFR-f VEGE Src FAK PISK mad2 PLCY PDGF-BE Erk1/2 NOS Erk1/2 Pericyte Endothelia 6 Pericyte Proliferati Vascula Proliferation Migrati Vascular Guidance bilitv © 2008 - 2013 Cel

### Angiogenesis

Angiogenesis is the formation of new blood vessels and can be induced by turnor growth, tissue wound, and inflammation. Rapid turnor cell growth creates intracellular hypoxia. Hypoxia-inducible factor (HIF) is a transcription factor that responds to changing intracellular oxygen concentration. Under typical oxygen levels (normoxia), HIF is hydroxylated and acetylated, modifications that target the transcription factor for VHLmediated ubiquitin degradation. During hypoxia, HIF accumulates and is transported to the nucleus where it induces expression of numerous target gene products. Secreted growth factors (such as VEGF, FGF, and TGF) induce signaling pathways (including PLCy, PI3K, Src, and Smad signaling) that result in endothelial cell proliferation, increased vascular permeability, and cell migration. In addition to hypoxia, the PI3K and Ras pathways can increase HIF expression by promoting HIF translation.

Pericytes are support cells that provide structural support for newly formed blood vessels, promote endothelial cell survival, guide sprouting vessels, and regulate vasoconstriction and dilation. This is done through a reciprocal signaling mechanism in which PDGF-BB secreted into the matrix by endothelial cells acts as a ligand for PDGF receptor- $\beta$  located on the pericyte membrane. In return, pericytes produce and secrete VEGF that signals through the endothelial VEGF receptor.

Extracellular matrix proteases and regulators induce tissue matrix remodeling in preparation for migration of endothelial cells from existing vessels to form new tubing. Tissue wounding, ischemia, or inflammation recruit macrophages and bone marrowderived inflammatory cells (BDMC) to wound areas and secrete a similar panel of proteins to induce angiogenesis.

Select Reviews: Keith, B., Johnson, R.S., and Simon, M.C. (2011) *Nat. Rev. Cancer* 12, 9–22. | Raza, A., Franklin, M.J., and Dudek, A.Z. (2010) *Am. J. Hematol.* 85, 593–598. | Sakurai, T. and Kudo, M. (2011) *Oncology* 81 Suppl 1, 24–29. | Senger, D.R. and Davis, G.E. (2011) *Cold Spring Harb. Perspect. Biol.* 3, a005090. | Tie, J. and Desai, J. (2012) *Crit. Rev. Oncog.* 17, 51–67. | van Hinsbergh, V.W. and Koolwijk, P. (2008) *Cardiovasc. Res.* 78, 203–212.

Transcription Factor pro-apoptotic

Kinase

Phosphatase

![](_page_38_Picture_13.jpeg)

![](_page_38_Picture_14.jpeg)

![](_page_38_Picture_15.jpeg)

![](_page_38_Picture_16.jpeg)

![](_page_38_Picture_17.jpeg)

![](_page_38_Picture_18.jpeg)

![](_page_38_Figure_20.jpeg)

![](_page_39_Figure_1.jpeg)

### Nuclear Receptor Signaling

The nuclear receptor superfamily are ligand-activated transcription factors that play diverse roles in cell differentiatios/ development, proliferation, and metabolism and are associated with numerous pathologies such as cancer, cardiovascular disease, inflammation, and reproductive atmomsilities. Members of this family contain an N-terminal transactivation domain, a highly conserved central region zinc-finger DNA binding domain, and a C-terminal ligand-binding domain. Ligand binding to its constate nuclear receptor results in transactivation of specific genes within a target tissue.

Type I nuclear receptors, also called steroid receptors, include the estrogen receptor, androgen receptor, progestarone receptor, and glucocorticoid receptor. Steroid hormone ligands for this subgroup of receptors travel from their respective endocrine gland through the bloodstream bound to steroid binding globalin. Some type 1 nuclear receptors are activated, in part, upon binding their respective ligand in the cytoplasmic compartment. The ligand-receptor complex enters the nuclear where it hornodimetures, dissociates from HEP30, and binds a hormone response element within the promoter of a target gene. The receptor transactivation domain is responsible for interaction at the promoter with acetyltransferases, co-activators, and the general transcription machinery (TEP, FHE, RNA polymesse II), thereby resulting in transcriptional activation.

Type II non-steroid nuclear receptors include thyroid hormone receptor, retinoic acid receptor, vitamin D receptor, and PRKR. Members of this family heterodimerize with the retinoid X receptor (RKR). Prior to ligand binding, receptor heterodimers are located in the nucleus as part of complexes with histone deacehylaxes (HDACs) and other corepressors that keep target DNA in a tightly wound conformation, preventing exposure to transactivation factors. Ligand binding results in HDAC dissociation, chromatin derepression, and transcriptional activation.

In addition to ligand binding, nuclear receptor activity can be modulated through the action of numerous growth factor and cytokine signaling cascades that result in receptor phosphorylation or other post-translational modifications, typically within the N-terminal transactituation domain. For example, the estrogen receptor is phosphorylated on multiple serine residues that affect receptor activity. Ser118 may be the substrate of the transcription regulatory kinase CDK7, whereas Ser167 may be phosphorylated by pSOR5K and Aki. Phosphorylation of Ser167 may confer resistance to tamoeffen in threast cancer patients.

For selected reviews see www.cellsignal.com

![](_page_39_Figure_8.jpeg)

### **ErbB/HER Signaling**

The Entil receptor tyrosine kinase family consists of four cell surface receptors: Entil®1: EGFR/HER1, Erb82/HER2, Ent83/HER3, and Erb84/HER4. Ent8 receptors are typical cell membrane receptor tyrosine kinases that are activated following ligand binding and receptor dimerization. Ligands can either display receptor specificity (i.e. EGF, TGF-o, AR, and Epigen bind EGFR) or bind to one or more related receptors; neuregulins 1–4 bind Ent83 and Erb84 while H8-EGF, epiregulin, and 8-cellulin activate EGFR and Erb84. Erb102 lades a known ligand, but recent structural studies suggest Erb82 is probably also regulated by ligand.

The ErbB receptors signal through Akt, MAPK, and many other pathways to regulate cell proliferation, migration, differentiation, apoptosis, and cell molitily. ErbB family members are often over-expressed, amplified, or mutated in many famils of cancer, making them important therapeutic targets. Researchers have found EGFR to be amplified in gliomas and NSCLC while ErbB2 amplifications are seen in breast, ovarian, blackler, NSCLC, as well as several other tumor types.

Besides functioning as receptors on the cell surface, ErbB family proteins are also present in the nucleus to act as both kinases and transcriptional regulations. For example, EGFR could be transported into the nucleus where it functions as a tyrosite kinase to phosphorplate and stabilize PCM. Similarly, membrane-bound ErbB2 interacts with importin [31 and Nap338 and migrates to the nucleus via endocytic neoides. Inside the nucleus, ErbB2 modulates the transcription of multiple downstream genes including CDR-2. In addition, NRG or TPA stimulation promotes ErbB4 cleavage by y-excentese, releasing an 80 KDe intracelular domain that translocates to the nucleus to induce differentiation or apoptosis. Upon activation and cleavage, ErbB4 can also form a complex with TAB2 and N-CoR to repress gene expression.

Signaling through ErbB networks is modulated through dense positive and negative feedback and feed forward loops, including transcription-independent early loops and late loops mediated by early synthesized potens and miRNAs. For example, schwated receptors can be switched "off" through deplosphorylation, receptor ubiquitination, or removal of active receptors from the cell surface through endosonial sorting and lysosomel degradation.

#### For selected reviews see www.cellsignal.com

We would like to thank Dr. Jinyan Du, Memimack Pharmaceuticals Inc., Cambridge, MA, for contributing to this diagram.

- Direct Inhibitory Modification

Multistep Stimulatory Modification
 Multistep Inhibitory Modification

Transcriptional Stimulation
Transcriptional Inhibition

![](_page_39_Picture_21.jpeg)

Joining of Bubunits -----+ Translocation Separation of Subunits or Cleavage Products

![](_page_40_Figure_1.jpeg)

### Ubiquitin/Proteasome

The ubiquitin proteasome pathway, conserved from yeast to mammals, is required for the targeted degradation of most short-lived proteins in the eukaryotic cell. Targets include cell cycle regulatory proteins, whose timely destruction is vital for controlled cell division, as well as proteins unable to fold properly within the endoplasmic reticulum.

Ubiquitin modification is an ATP-dependent process carried out by three classes of enzymes. A "ubiquitin activating enzyme" (E1) forms a thio-ester bond with ubiquitin, a highly conserved 76-amino acid protein. This reaction allows subsequent binding of ubiquitin to a "ubiquitin conjugating enzyme" (E2), followed by the formation of an isopeptide bond between the carboxy-terminus of ubiquitin and a lysine residue on the substrate protein. The latter reaction requires a "ubiquitin ligase" (E3). E3 ligases can be single- or multi-subunit enzymes. In some cases, the ubiquitin-binding and substratebinding domains reside on separate polypeptides brought together by adaptor proteins or cullins. Numerous E3 ligases provide specificity in that each can modify only a subset of substrate proteins, including, but not limited to, phosphorylation.

Effects of monoubiquitination include changes in subcellular localization. However, multiple ubiquitination cycles resulting in a polyubiquitin chain are required for targeting a protein to the proteasome for degradation. The multisuburit 26S proteasome recognizes, unfolds, and degrades polyubiquitinated substrates into small peptides. The reaction occurs within the cylindrical core of the proteasome complex, and peptide bond hydrolysis employs a core threonine residue as the catalytic nucleophile.

Recent work has indicated that an additional layer of complexity, in the form of multiubiquitin chain receptors, may lie between the polyubiquitination and degradation steps. These receptors react with a subset of polyubiquitinated substrates, aiding in their recognition by the 26S proteasome, and thereby promoting their degradation.

This pathway is not only important in cellular homeostasis, but also in human disease. Because ubiquitin/proteasome-dependent degradation is often employed in control of the cell division cycle and cell growth, researchers have found that proteasome inhibitors hold some promise of being developed into potential cancer therapeutic agents.

Select Reviews: Budhidarmo, R., Nakatani, Y., and Day, C.L. (2012) Trends Biochem. Sci. 37, 58–65. [Burrows, J.F. and Johnston, J.A. (2012) Front. Biosci. 17, 1184–200. [Hammond-Martel, I., Yu, H., and Affar el, B. (2012) Cell Signal. 24, 410–421. Schaefer, A., Nethe, M., and Hordijk, P.L. (2012) Biochem. J. 442, 13–25. [Weissman, A.M., Shabek, N., and Ciechanover, A. (2011) Nat. Rev. Mol. Cell Biol.12, 605–620.

### Ubiquitin Ligase Table

The Ubiquitin Ligase Table provides a list of E3 ubiquitin ligases, along with their substrates (when known), and corresponding references. This table was generated using PhosphoSitePlus®, Cell Signaling Technology's protein modification resource. See page 4 for more information on PhosphoSitePlus®.

We would like to thank Prof. Wenyi Wei, Beth Israel Deaconess Medical Center, Harvard Medical School, for contributing to this table.

| We Would like to | ananki i toi. Wonyi Woi, Dourio                       |                                                                                                                                                                                                                                                                                                                                                                                                       | ignaling lechnology, inc.                 |
|------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Ligase           | Substrate                                             | Function                                                                                                                                                                                                                                                                                                                                                                                              | PMID                                      |
| AMFR             | KAI1                                                  | AMFR is also known as gp78. AMFR is an integral ER membrane protein and functions in ER-associated degradation (ERAD). AMFR has been found to<br>promote tumor metastasis through ubiquitination of the metastasis suppressor, KAI1.                                                                                                                                                                  | 18037895                                  |
| APC/Cdc20        | Cyclin B, Securin                                     | The anaphase promoting complex/cyclosome (APC/C) is a multiprotein complex with E3 ligase activity that regulates cell cycle progression through degrada-<br>tion of cyclins and other mitotic proteins. APC is found in a complex with CDC20, CDC27, SPATC1, and TUBG1.                                                                                                                              | 17609108, 12070128                        |
| APC/Cdh1         | Cdc20, Cyclin B, Cyclin A,<br>Aurora A, Skp2, Claspin | The anaphase promoting complex/cyclosome (APC/C) is a multiprotein complex with E3 ligase activity that regulates cell cycle progression through degrada-<br>tion of cyclins and other mitotic proteins. The APC/C-Cdh1 dimeric complex is activated during anaphase and telophase, and remains active until onset of the<br>next S phase.                                                            | 10548110, 11562349,<br>15014503, 19477924 |
| ARIH1            | 4EHP                                                  | ARIH1 is an E3 ubiquitin ligase that may regulate protein translation by targeting elF4E2 for ubiquitination and degradation by the proteasome.                                                                                                                                                                                                                                                       | 14623119                                  |
| BIRC2            | Smac, TRAF2                                           | BIRC2 is an apoptotic suppressor that prevents caspase activation by forming a complex with TNF receptor associated factors 1 and 2 (TRAF1 and TRAF2), which is then recruited to the tumor necrosis factor receptor 2 (TNFR2).                                                                                                                                                                       | 12525502, 18434593                        |
| BIRC3            | Caspase 3 and 7, Smac,<br>TRAF1                       | BIRC3 is an apoptotic suppressor that prevents caspase activation by forming a complex with TNF receptor associated factors 1 and 2 (TRAF1 and TRAF2), which is then recruited to the tumor necrosis factor receptor 2 (TNFR2).                                                                                                                                                                       | 10862606, 12525502,<br>15468071           |
| BIRC4            | Caspase 3, Smac, MEKK2                                | BIRC4 is an apoptotic suppressor that prevents caspase activation by forming a complex with TNF receptor associated factors 1 and 2 (TRAF1 and TRAF2), which is then recruited to the tumor necrosis factor receptor 2 (TNFR2). BIRC4 is also known as XIAP.                                                                                                                                          | 11447297, 12121969,<br>18761086           |
| BIRC7            | Smac                                                  | BIRC7 is an E3 ubiquitin ligase with anti-apoptotic activity. BIRC7 supports cell survival by targeting Smac for ubiquitination and degradation by the protea-<br>some.                                                                                                                                                                                                                               | 16729033                                  |
| Bmi1             | H2A K119                                              | Bmi1 is a component of the polycomb group multiprotein PRC1- like (PcG PRC1) complex. Bmi1 is required for stimulating PcG PRC1 ubiquitin-protein ligase activity.                                                                                                                                                                                                                                    | 18650381                                  |
| BRCA1            | ER-a, Rpb8, CtIP, FANCD2                              | BRCA1 is an E3 ubiquitin ligase that maintains genomic stability by repairing DNA damage. Research studies have shown that mutations of this gene have been linked to breast cancer.                                                                                                                                                                                                                  | 17392432, 17283126,<br>16818604, 11239454 |
| C6orf157         | Cyclin B                                              | C6orf157 is also known as H10BH. C6orf157 is an E3 ubiquitin ligase that has been shown to ubiquitinate cyclin B.                                                                                                                                                                                                                                                                                     | 15749827                                  |
| Cbl              |                                                       | Cbl-b and c-Cbl are members of the Cbl family of adaptor proteins that are highly expressed in hematopoietic cells. Cbl proteins possess E3 ubiquitin ligase<br>activity that downregulates numerous signaling proteins and RTKs in several pathways such as EGFR, T cell and B cell receptors, and integrin receptors. Cbl<br>proteins play an important role in T cell receptor signaling pathways. | 18759930, 9797470                         |
| CBLL1            | CDH1                                                  | CBLL1 is also known as Hakai. CBLL1 is an E3 ubiquitin ligase that ubiquitinates the phosphorylated form of E-Cadherin, causing its degradation and loss of cell-cell adhesions.                                                                                                                                                                                                                      | 11836526                                  |
| CHFR             | PLK1, Aurora A                                        | CHFR is an E3 ubiquitin ligase that functions as a mitotic stress checkpoint protein that delays entry into mitosis in response to stress. CHFR has been shown to ubiquitinate and degrade the kinases PLK1 and Aurora A.                                                                                                                                                                             | 14562038, 19326084                        |
| CHIP             | HSP70/90, iNOS, Runx1,<br>LRRK2                       | CHIP is an E3 ubiquitin ligase that acts as a co-chaperone protein and interacts with several heat shock proteins, including HSP70 and HSP90, as well as the nonheat shock proteins iNOS, Runx1, and LRRK2.                                                                                                                                                                                           | 19913553, 19362296,<br>19524548, 19536328 |
| Cul3/HIB         | Ci/Gli                                                | Cul3/HIB is an E3 ubiquitin ligase complex composed of Cullin3, Hedgehog-induced MATH and BTB domain-containing protein (HIB), and SPOP. Cul3/HIB targets the Hedgehog pathway transcription factor (Ci)/Gli for ubiquitination and degradation by the proteasome.                                                                                                                                    | 16740475                                  |
| Cul3/Keap1       | Nrf2                                                  | Cul3/Keap1 is part of an E3 ubiquitin ligase complex composed of RBX1, cullin3 and the substrate-recognition component Keap1. Cul3/Keap1 targets Nrf2, a transcription factor that regulates antioxidant genes in response to oxidative stress for ubiquitination and degradation by the proteasome.                                                                                                  | 12682069                                  |
|                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |

![](_page_40_Picture_13.jpeg)

![](_page_40_Picture_14.jpeg)

![](_page_40_Picture_15.jpeg)

![](_page_40_Picture_16.jpeg)

![](_page_40_Picture_17.jpeg)

![](_page_40_Picture_18.jpeg)

![](_page_40_Picture_19.jpeg)

#### www.cellsignal.com <u>42</u>

| Ligase        | Substrate                           | Function                                                                                                                                                                                                                                                                                                                                                                                                         | PMID                            |
|---------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Cul3/MEL-26   | mei-1                               | Cul3/MEL-26 is an E3 ubiquitin ligase complex composed of cullin3 and the substrate-recognition component MEL-26. MEL-26 targets mei-1 for ubiquitina-<br>tion and subsequent proteasomal degradation.                                                                                                                                                                                                           |                                 |
| Cul4/Cdt2     | Cdt1, p21, Set8                     | Cul4/Cdt2 is an E3 ubiquitin ligase complex composed of DCX (DDB1-CUL4-X-box) and the substrate recognition component Cul4/Cdt2. Cul4/Cdt2 regulates cell cycle progression into S phase by targeting cdt1 and spd1 for ubiquitination and degradation by the proteasome.                                                                                                                                        | 16949367, 18794347,<br>20932471 |
| Cul4/COP1     | c-Jun, p53                          | Cul4/COP1 is an E3 ubiquitin ligase that mediates ubiquitination and subsequent proteasomal degradation of target proteins. COP1 targets the oncoprotein c-Jun and may target the tumor suppressor p53 for ubiquitination and degradation.                                                                                                                                                                       | 12615916, 16931761,<br>21572435 |
| Cul4/DDB2     | XPC, H3, H4                         | Cul4/DDB2 is an E3 ubiquitin ligase complex composed of DCX (DDB1-CUL4-R0C1) and the substrate recognition component Cul4/DDB2. Cul4/DDB2 may target histone H2A, histone H3, and histone H4 at sites of UV-induced DNA damage to induce ubiquitination and degradation by the proteasome.                                                                                                                       | 15882621, 16678110              |
| Cul5/SOCS1    | Dab1                                | Cul5/SOCS1 is part of an SCF-like ECS (Elongin BC-CUL2/5-SOCS-box protein) E3 ubiquitin ligase complex. Cul5/SOCS1 targets components of the Jak/Stat pathway as well as Dab1, a regulator of cortical development, for ubiquitination and degradation by the proteasome.                                                                                                                                        | 17974915                        |
| Cul5/SOCS4    | EGFR                                | Cul5/SOCS4 is part of an SCF-like ECS (Elongin BC-CUL2/5-SOCS-box protein) E3 ubiquitin ligase complex. SOCS4 may target components of cytokine signal transduction pathways, such as EGF receptor (EGFR) for ubiquitination and degradation by the proteasome.                                                                                                                                                  | 17997974                        |
| Cul5/Vif      | APOBEC3G                            | Cul5/Vif is part of an SCF-like ECS (Elongin BC-CUL2/5-SOCS-box protein) E3 ubiquitin ligase complex. Vif targets APOBEC3G and APOBEC3F for ubiquitina-<br>tion and degradation by the proteasome. The interaction of Vif with APOBEC3G also blocks its cytidine dearninase activity in a proteasome-independent<br>manner,                                                                                      | 15574592                        |
| Cul7/FBXW8    | cyclin D1                           | Cul7/FBXW8 is an SCF-like E3 ubiquitin ligase complex composed of SKP1, CUL7, RBX1, GLMN isoform 1, and the substrate recognition component, FBXW8.                                                                                                                                                                                                                                                              | 17205132                        |
| DZIP3         | H2AK119                             | DZIP3 is an E3 ubiquitin ligase that blocks transcriptional elongation by ubiquinating H2A at lysine 119.                                                                                                                                                                                                                                                                                                        | 12538761                        |
| E6-AP         | p53, Dlg                            | E6-AP is also known as UBE3A. E6-AP is a HECT domain E3 ubiquitin ligase that interacts with Hepatitis C virus (HCV) core protein and targets it for<br>degradation. The HCV core protein is central to packaging viral DNA and other cellular processes. E6-AP also interacts with the E6 protein of the human<br>papillomavirus types 16 and 18, and targets the p53 tumor-suppressor protein for degradation. | 17108031                        |
| FANCL         | FANC D2                             | FANCL is an ubiquitin ligase protein integral to the DNA repair pathway.                                                                                                                                                                                                                                                                                                                                         | 12973351                        |
| HACE1         |                                     | HACE1 is an E3 ubiquitin ligase and tumor suppressor. Research has shown that aberrant methylation of HACE1 is frequently found in Wilms' tumors and colorectal cancer.                                                                                                                                                                                                                                          | 17694067                        |
| HECTD1        |                                     | HECTD1 is an ubiquitin E3 ligase required for neural tube closure and normal development of the mesenchyme.                                                                                                                                                                                                                                                                                                      | 17442300                        |
| HECTD2        |                                     | HECTD2 is a probable E3 ubiquitin ligase and may act as a susceptibility gene for neurodegeneration and prion disease.                                                                                                                                                                                                                                                                                           | 19214206                        |
| HECTD3        |                                     | HECTD3 is a probable E3 ubiquitin ligase and may play a role in cytoskeletal regulation, actin remodeling, and vesicle trafficking.                                                                                                                                                                                                                                                                              | 18194665                        |
| HECW1         | DVL1, mutant SOD1, p53              | HECW1 is also known as NEDL1. HECW1 interacts with p53 and the Wnt signaling protein DVL1, and may play a role in p53-mediated cell death in neurons.                                                                                                                                                                                                                                                            | 14684739, 18223681              |
| HECW2         | p/3                                 | HEUWZ is also known as NEULZ. HEUWZ ubiquitinates p/3, which is a p53 family member. Ubiquitination of p73 increases protein stability.                                                                                                                                                                                                                                                                          | 12890487                        |
| HERC2         | KINF8                               | HERC2 belongs to a family of E3 ubiquitin ligases involved in memorane trafficking events. HERC2 plays a role in the DNA damage response through interac-<br>tion with RNF8.                                                                                                                                                                                                                                     | 10525700                        |
| HERCA         |                                     | HEROS belongs to a ramity of E3 ubiquitin ligases involved in membrane trafficking events. HEROS interacts with HELO-1 and HELO-2 and hocarizes to the late endosomes and lysosomes.                                                                                                                                                                                                                             | 17067449                        |
|               |                                     | PERCE debuilty to a ramity of E3 ubiquitin ligases involved in membrane transcring events. PERCE is induced by interferen and etter are inflammatery<br>spermatogenesis.                                                                                                                                                                                                                                         | 16407100 16916075               |
| HERC5         | DOMA                                | HERCs belongs to a family of E3 upiquitni ligases involved in memorane trancking events. HERCs is induced by interferon and other pro-inhammatory<br>cytokines and plays a role in interferon-induced ISG15 conjugation during the innate immune response.                                                                                                                                                       | 1640/192, 168159/5              |
| HLIF          | PUNA                                | HLIF is both a neilcasee and an E3 ubiquitin ligase. HLIF participates in postreplication repair (PHK) of damaged DNA by polyubiquitination of chromatin-<br>bound PCNA.                                                                                                                                                                                                                                         | 18316726                        |
| HOIP          | РКС                                 | HOIP is the E3 ubiquitin ligase of the LUBEC (linear ubiquitin chain assembly complex) which ubiquitinates signaling proteins, targeting them for proteasomal degradation.                                                                                                                                                                                                                                       | 17069764                        |
| HUWE1         | N-Myc, C-Myc, p53, McI-1,<br>TopBP1 | HUWET is also known as Mule. HUWE1 is a HECI domain E3 ubiquitin ligase that regulates degradation of McI-1 and therefore regulates DNA damage-<br>induced apoptosis. HUWE1 also controls neuronal differentiation by destabilizing N-Myc, and regulates p53-dependent and independent tumor suppression<br>via ARF.                                                                                             | 15989957                        |
| HYD           | CHK2                                | HYD is also known as EDD or UBR5. HYD is a regulator of the DNA damage response and is overexpressed in many forms of cancer.                                                                                                                                                                                                                                                                                    | 18073532                        |
| IBRDC2        | p21, Bax                            | IBRDC2 is an E3 ubiquitin ligase involved in the regulation of apoptosis. IBRDC2 expression can be induced by p53 and may target apoptosis related proteins p21 and Bax.                                                                                                                                                                                                                                         | 12853982                        |
| IBRDC3        | UCKL-1                              | IBRDC3 is an E3 ubiquitin ligase involved in the cytolytic activities of hematopoietic natural killer cells and T cells.                                                                                                                                                                                                                                                                                         | 16709802                        |
| ITCH          | MKK4, RIP2, Foxp3                   | ITCH plays a role in T cell receptor activation and signaling through ubiquitination of multiple proteins including MKK4, RIP2, and Foxp3. Loss of ITCH function leads to an aberrant immune response and T helper cell differentiation.                                                                                                                                                                         | 19737936, 19592251,<br>20108139 |
| LNX1          | NUMB                                | LNX1 is an E3 ubiquitin ligase that plays a role in cell fate determination during embryogenesis through regulation of NUMB, the negative regulator of Notch signaling.                                                                                                                                                                                                                                          | 11782429                        |
| LRSAM1        | Tsg101                              | LRSAM is an E3 ubiquitin ligase that mediates intracellular vesicular trafficking by monoubiquitination of TSG101.                                                                                                                                                                                                                                                                                               | 15256501                        |
| Mahogunin     |                                     | Mahogunin is an E3 ubiquitin ligase involved in melanocortin signaling. Loss of mahogunin function leads to neurodegeneration and loss of pigmentation, and may be the mechanism of action in prion disease.                                                                                                                                                                                                     | 19737927, 19524515              |
| MALIN         | laforin                             | Malin, also known as NHLRC1, is an E3 ubiquitin ligase that promotes the ubiquitination and proteasomal degradation of misfolded proteins.                                                                                                                                                                                                                                                                       | 15930137                        |
| MARCH-I       | HLA-DRβ                             | MARCH1 is an E3 ubiquitin ligase found on antigen presenting cells (APCs). MARCH1 ubiquitinates MHC class II proteins and downregulates their cell surface expression.                                                                                                                                                                                                                                           | 19880452                        |
| MARCH-II      |                                     | MARCH-II is a member of the MARCH family of E3 ubiquitin ligases. It associates with syntaxin6 in the endosomes and helps to regulate vesicle trafficking.                                                                                                                                                                                                                                                       | 15689499                        |
| MARCH-III     |                                     | MARCH-III is a member of the MARCH family of E3 ubiquitin ligases. MARCH-III associates with syntaxin6 in the endosomes and helps to regulate vesicle trafficking.                                                                                                                                                                                                                                               | 16428329                        |
| MARCH-IV      | MHC class I                         | MARCH-IV is a member of the MARCH family of E3 ubiquitin ligases. MARCH-IV ubiquitinates MHC class I proteins and downregulates their cell surface expression.                                                                                                                                                                                                                                                   | 14722266                        |
| MARCH-V       | DRP1                                | MARCH-V is a member of the MARCH family of E3 ubiquitin ligases. March-V is located in the mitochondria and aids in the control of mitochondrial morphology.                                                                                                                                                                                                                                                     | 16936636                        |
| MARCH-VI      |                                     | MARCH-VI is also known as TEB4 and is a member of the MARCH family of E3 ubiquitin ligases. It localizes to the endoplasmic reticulum and participates in<br>ER-associated protein degradation.                                                                                                                                                                                                                  | 16373356                        |
| MARCH-VII     | gp190                               | MARCH-VII is also known as axotrophin. MARCH-VII was originally identified as a neural stem cell gene, but has since been shown to play a role in LIF signal-<br>ing in T lymphocytes through degradation of the LIF receptor subunit, gp190.                                                                                                                                                                    | 19901269                        |
| MARCH-VIII    | B7-2, MHC class II                  | MARCH-VIII is also known as c-MIR. MARCH-VIII causes the ubiquitination/degradation of B7-2, which is a co-stimulatory molecule for antigen presentation.<br>MARCH-VIII has also been shown to ubiquitinate MHC class II proteins.                                                                                                                                                                               | 16785530                        |
| MARCH-IX      | ICAM-1, MHC-I                       | MARCH-IX is a member of the MARCH family of E3 ubiquitin ligases. MARCH-IX mediates ubiquitination of transmembrane proteins, marking them for<br>endocytosis and sorting to lysosomes via multivesicular bodies.                                                                                                                                                                                                | 17174307, 14722266              |
| MARCH-X       |                                     | MARCH-X is also known as RNF190. MARCH-X is a member of the MARCH family of E3 ubiquitin ligases. MARCH-X may be involved in spermiogenesis.                                                                                                                                                                                                                                                                     | 21937444                        |
|               |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
|               |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
| > Direct Stin | nulatory Modification               | Multistep Stimulatory Modification ——-> Tentative Stimulatory Modification 🔂 Transcriptional Stimulation Joining of Subunits                                                                                                                                                                                                                                                                                     | > Translocation                 |

-----> Direct Stimulatory Modification ----- Direct Inhibitory Modification

Transcriptional Inhibition

Joining of Subunits ----> Translocation Separation of Subunits or Cleavage Products

| Light of the second stateMarket is a member of the MARCH family of E3 ubiquitin ligases. MARCH-IX mediates ubiquitination of CD4, marking it for endocytosis and sorting lysosomes via multivesicular bodies.MDM2p53MDM2, an E3 ubiquitin ligase for p53, plays a central role in regulation of the stability of p53. Akt-mediated phosphorylation of MDM2 at Ser166 and So increases its interaction with p300, allowing MDM2-mediated ubiquitination and degradation of p53.MEKK1c-Jun, ErkMEKK1 is a well known protein kinase of the STE11 family. MEKK1 phosphorylates and activates MKK4/7, which in turn activates JNK1/2/3. MEKK1 core a RING finger domain and exhibits E3 ubiquitin ligase tactivity toward c-Jun and Erk.MGRN1Tsg101MGRN1 is an E3 ubiquitin ligase that mediates intracellular vesicular trafficking by monoubiquitination of TSG101.MIB1Delta, JaggedMindbomb homolog 1 (MIB1) is an E3 ligase that facilitates the ubiquitination and subsequent endocytosis of the Notch ligands, Delta and Jagged.MID1PP2AMind Bomb 2 (MIB2) is an E3 ligase that positively regulates Notch Signaling. MIB2 has been shown to play a role in myotube differentiation and muscle stability. MIB2 ubiquitin ligase that regulates shown as protein phosphatase 2 for ubiquitination and proteasomal degradation.MKR1hTERT, p53, CDKN1A, FLIPIMKRN1 is an E3 ubiquitin ligase that regulates shown as PAM. MycBP2 associates with Fbxo45 to play a role in neuronal development. MycBP2 also regulates the more apoptotic functions.MycBP2Snad2, PTENMcD4, is an E3 ubiquitin ligase highly expressed in the early mouse embryonic central nervous system. NED04 downregulates both neuronal voltage-ga<br>Na+ channels (NaVs) and epithelial Na+ channels (ENACs) in response to increased intracellular Na+ concentratio                                                                                                                                                                                                                                                                                       | 1100           17604280           17604280           17604280           17604280           17604280           12049732, 17101801           17229889           16000382           15824097, 18216171, 17962190           11685209           15805468           19398581, 18308511           ted           9618557, 9792722           19917253, 17218260           17003037, 11696324           da-           12826607 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MDM2p53MDM2, an E3 ubiquitin ligase for p53, plays a central role in regulation of the stability of p53. Akt-mediated phosphorylation of MDM2 at Ser166 and SeMEKK1c-Jun, ErkMEKK1 is a well known protein kinase of the STE11 family. MEKK1 phosphorylates and activates MKK4/7, which in turn activates JNK1/2/3. MEKK1 cor<br>a RING finger domain and exhibits E3 ubiquitin ligase activity toward c-Jun and Erk.MGRN1Tsg101MGRN1 is an E3 ubiquitin ligase that mediates intracellular vesicular trafficking by monoubiquitination of TSG101.MIB1Delta, JaggedMind Bombo 1 (MIB2) is an E3 ligase that facilitates the ubiquitination and subsequent endocytosis of the Notch ligands, Delta and Jagged.MID1PP2AMid1, also known as Midline-1, is an E3 ubiquitin ligase that regulates synaptic plasticity in neurons.MUD4hTERT, p53, CDKN1A, FLIPMKRN1 is an E3 ubiquitin ligase also known as PAM. MycBP2 associates with Fbxo45 to play a role in neuronal deerlopment. MycBP2 also regulates that more play as a role in neuronal deerlopment. MycBP2 also regulates that more play as a role in neuronal deerlopment. MycBP2 also regulates that more play as one in neuronal deerlopment. MycBP2 also regulates that more play as one in neuronal deerlopment. MycBP2 also regulates that more play as one in neuronal deerlopment. MycBP2 also regulates that more play as one in neuronal deerlopment. MycBP2 also regulates that more play as one in neuronal deerlopment. MycBP2 also regulates that more play as one in neuronal deerlopment. MycBP2 also regulates that more play as one in neuronal development. MycBP2 also regulates that more play as one in neuronal development. MycBP2 also regulates that more play as one in neuronal development. MycBP2 also regulates that more play as one in neuronal development. MycBP2 also regulates that more play as one in neur                                                                                                                                                                                                                         | r186 9153395<br>tains 12049732, 17101801<br>17229889<br>16000382<br>15824097, 18216171,<br>17962190<br>11685209<br>115805468<br>e 19398581, 18308511<br>ted 9618557, 9792722<br>9 9618557, 9792722<br>19917253, 17218260<br>17003037, 11696324<br>da- 12826607                                                                                                                                                       |
| MEKK1c-Jun, ErkMEKK1 is a well known protein kinase of the STE11 family. MEKK1 phosphorylates and activates MKK4/7, which in turn activates JNK1/2/3. MEKK1 coll<br>a RING finger domain and exhibits E3 ubiquitin ligase activity toward c-Jun and Erk.MGRN1Tsg101MGRN1 is an E3 ubiquitin ligase that mediates intracellular vesicular trafficking by monoubiquitination of TSG101.MIB1Delta, JaggedMindbomb homolog 1 (MIB1) is an E3 ligase that facilitates the ubiquitination and subsequent endocytosis of the Notch ligands, Delta and Jagged.MIB2Delta, JaggedMind Bomb 2 (MIB2) is an E3 ligase that positively regulates Notch Signaling. MIB2 has been shown to play a role in myotube differentiation and muscle<br>stability. MIB2 ubiquitinates NMDAR suburits to help regulate synaptic plasticity in neurons.MID1PP2AMid1, also known as Midline-1, is an E3 ubiquitin ligase that regulates both anti- and pro-apoptotic functions.MycBP2Fbxo45, TSC2MycBP2 is an E3 ubiquitin ligase also known as PAM. MycBP2 associates with Fbxo45 to play a role in neuronal development. MycBP2 also regulates the<br>mTOR pathway through ubiquitination of TSC2.NEDD4Sand2, PTENNEDD4 is an E3 ubiquitin ligase highly expressed in the early mouse embryonic central nervous system. NEDD4 has been shown to negatively regulate<br>Na4 - channels (NAVs) and epithelial Na+ channels (ENACs) in response to increased intracellular Na+ concentrations.NEURLJagged 1, DeltaNEURL is an E3 ubiquitin ligase involved in Notch signaling and neurological determination of cell fate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12049732, 17101801           17229889           16000382           15824097, 18216171,<br>17962190           11685209           15805468           9           9618557, 9792722           9917253, 17218260           17003037, 11696324           da-                                                                                                                                                               |
| MGRN1       Tsg101       MGRN1 is an E3 ubiquitin ligase that mediates intracellular vesicular trafficking by monoubiquitination of TSG101.         MIB1       Delta, Jagged       Mindbomb homolog 1 (MIB1) is an E3 ligase that facilitates the ubiquitination and subsequent endocytosis of the Notch ligands, Delta and Jagged.         MIB2       Delta, Jagged       Mind Bomb 2 (MIB2) is an E3 ligase that positively regulates Notch Signaling. MIB2 has been shown to play a role in myotube differentiation and muscle stability. MIB2 ubiquitinates NMDAR subunits to help regulate synaptic plasticity in neurons.         MID1       PP2A       Mid1, also known as Midline-1, is an E3 ubiquitin ligase that regulates both anti- and pro-apoptotic functions.         MKRN1       NTERT, p53, CDKN1A, FLIPI       MKRN1 is an E3 ubiquitin ligase also known as PAM. MycBP2 associates with Fbxo45 to play a role in neuronal development. MycBP2 also regulates the more apoptotic functions.         MEDD4       DeD4 is an E3 ubiquitin ligase highly expressed in the early mouse embryonic central nervous system. NEDD4 downregulates both neuronal velotage and increased intracellular Na+ concentrations.         NEDD4.       Smad2, PTEN       DeD04. is an E3 ubiquitin ligase highly expressed in the early mouse embryonic central nervous system. NEDD4. has been shown to negatively regulates for degradation.         NEURL       Jagged 1, Delta       NEUPL is an E3 ubiquitin ligase involved in Notch signaling and neurological determination of cell fate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17229889<br>16000382<br>15824097, 18216171,<br>17962190<br>11685209<br>15805468<br>e 19398581, 18308511<br>e 9618557, 9792722<br>19917253, 17218260<br>17003037, 11696324<br>da- 12826607                                                                                                                                                                                                                            |
| MIB1         Delta, Jagged         Mindbomb homolog 1 (MIB1) is an E3 ligase that facilitates the ubiquitination and subsequent endocytosis of the Notch ligands, Delta and Jagged.           MIB2         Delta, Jagged         Mind Bomb 2 (MIB2) is an E3 ligase that positively regulates Notch Signaling. MIB2 has been shown to play a role in myotube differentiation and muscle stability. MIB2 ubiquitinates NMDAR subunits to help regulate synaptic plasticity in neurons.           MID1         PP2A         Mid1, also known as Midline-1, is an E3 ubiquitin ligase that may target protein phosphatase 2 for ubiquitination and proteasomal degradation.           MKRN1         hTERT, p53, CDKN1A, FLIPI         MKRN1 is an E3 ubiquitin ligase that regulates both anti- and pro-apoptotic functions.           MycBP2         Fbxo45, TSC2         MycBP2 is an E3 ubiquitin ligase also known as PAM. MycBP2 associates with Fbxo45 to play a role in neuronal development. MycBP2 also regulates the mTOR pathway through ubiquitination of TSC2.           NEDD4         NEDD4 is an E3 ubiquitin ligase highly expressed in the early mouse embryonic central nervous system. NEDD4 downregulates both neuronal voltage-grave and -channels (NAVS) and epithelial Na+ channels (ENaCS) in response to increased intracellular Na+ concentrations.           NEDD4.         Smad2, PTEN         NEDD4 is an E3 ubiquitin ligase highly expressed in the early mouse embryonic central nervous system. NEDD4 has been shown to negatively regulate for GF-β signaling by targeting Smad2 for degradation.           NEURL         Jagged 1, Delta         NEURL is an E3 ubiquitin ligase involved in Notch signaling and neurological determinati                                                                                                                                                                                                                                                                                                                                                      | 16000382<br>15824097, 18216171,<br>17962190<br>11685209<br>15805468<br>e 19398581, 18308511<br>e 9618557, 9792722<br>9017253, 17218260<br>17003037, 11696324<br>da- 12826607                                                                                                                                                                                                                                         |
| MIB2       Delta, Jagged       Mind Bomb 2 (MIB2) is an E3 ligase that positively regulates Notch Signaling. MIB2 has been shown to play a role in myotube differentiation and muscle stability. MIB2 ubiquitinates NMDAR subunits to help regulate synaptic plasticity in neurons.         MID1       PP2A       Mid1, also known as Midline-1, is an E3 ubiquitin ligase that may target protein phosphatase 2 for ubiquitination and proteasomal degradation.         MKRN1       hTERT, p53, CDKN1A, FLIP       MKRN1 is an E3 ubiquitin ligase that regulates both anti- and pro-apoptotic functions.         MycBP2       Fbxo45, TSC2       MycBP2 is an E3 ubiquitin ligase also known as PAM. MycBP2 associates with Fbxo45 to play a role in neuronal development. MycBP2 also regulates the more pathway through ubiquitination of TSC2.         NEDD4       NEDD4 is an E3 ubiquitin ligase highly expressed in the early mouse embryonic central nervous system. NEDD4 downregulates both neuronal voltage-game and channels (NAS) and epithelial Na+ channels (ENAS) in response to increased intracellular Na+ concentrations.         NEDD4L       Smad2, PTEN       NEDD4L is an E3 ubiquitin ligase highly expressed in the early mouse embryonic central nervous system. NEDD4L has been shown to negatively regulate for degradation.         NEURL       Jagged 1, Delta       NEURL is an E3 ubiquitin ligase involved in Notch signaling and neurological determination of cell fate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15824097, 18216171,<br>17962190<br>11685209<br>15805468<br>e 19398581, 18308511<br>ted 9618557, 9792722<br>9 19917253, 17218260<br>17003037, 11696324<br>da- 12826607                                                                                                                                                                                                                                                |
| MID1       PP2A       Mid1, also known as Midline-1, is an E3 ubiquitin ligase that may target protein phosphatase 2 for ubiquitination and proteasomal degradation.         MKRN1       hTERT, p53, CDKN1A, FLIP1       MKRN1 is an E3 ubiquitin ligase that regulates both anti- and pro-apoptotic functions.         MycBP2       Fbxo45, TSC2       MycBP2 is an E3 ubiquitin ligase also known as PAM. MycBP2 associates with Fbxo45 to play a role in neuronal development. MycBP2 also regulates the mTOR pathway through ubiquitination of TSC2.         NEDD4       NEDD4 is an E3 ubiquitin ligase highly expressed in the early mouse embryonic central nervous system. NEDD4 downregulates both neuronal voltage-gas Na+ channels (NaVs) and epithelial Na+ channels (ENaCs) in response to increased intracellular Na+ concentrations.         NEDD4.       Smad2, PTEN       NEDD4L is an E3 ubiquitin ligase highly expressed in the early mouse embryonic central nervous system. NEDD4L has been shown to negatively regulate the tearly mouse embryonic central nervous system. NEDD4L has been shown to negatively regulate the tearly mouse embryonic central nervous system. NEDD4L has been shown to negatively regulate the tearly mouse embryonic central nervous system. NEDD4L has been shown to negatively regulate the tearly mouse embryonic central nervous system. NEDD4L has been shown to negatively regulate the tearly mouse embryonic central nervous system. NEDD4L has been shown to negatively regulate the tearly mouse embryonic central nervous system. NEDD4L has been shown to negatively regulate the tearly mouse embryonic central nervous system. NEDD4L has been shown to negatively regulate the tearly mouse embryonic central nervous system. NEDD4L has been shown to negatively regulate tearly mouse embryonic central nervous system. NEDD4L                                                                                                                                                                                                                           | 11685209<br>15805468<br>e 19398581, 18308511<br>ted 9618557, 9792722<br>19917253, 17218260<br>17003037, 11696324<br>da- 12826607                                                                                                                                                                                                                                                                                     |
| MKRN1       h1EHI, p53, CUKN1A, FLIP1       MKRN1 is an E3 ubiquitin ligase that regulates both anti- and pro-apoptotic functions.         MycBP2       Fbxo45, TSC2       MycBP2 is an E3 ubiquitin ligase also known as PAM. MycBP2 associates with Fbxo45 to play a role in neuronal development. MycBP2 also regulates to mTOR pathway through ubiquitination of TSC2.         NEDD4       NEDD4 is an E3 ubiquitin ligase highly expressed in the early mouse embryonic central nervous system. NEDD4 downregulates both neuronal voltage-gr. Na+ channels (NAVs) and epithelial Na+ channels (ENaCs) in response to increased intracellular Na+ concentrations.         NEDD4L       Smad2, PTEN       NEDD4L is an E3 ubiquitin ligase highly expressed in the early mouse embryonic central nervous system. NEDD4L has been shown to negatively regulate for Geradation.         NEURL       Jagged 1, Delta       NEURL is an E3 ubiquitin ligase involved in Notch signaling and neurological determination of cell fate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15805468         e       19398581, 18308511         ted       9618557, 9792722         intervention       19917253, 17218260         17003037, 11696324         da-       12826607                                                                                                                                                                                                                                   |
| MyCBP2       Floxe45, 15C2       MyCBP2 is an E3 ubiquitin ligase also known as PAM. MyCBP2 associates with Floxe45 to play a fole in fleuronial development. MyCBP2 also regulates to mTOR pathway through ubiquitination of TSC2.         NEDD4       NEDD4 is an E3 ubiquitin ligase highly expressed in the early mouse embryonic central nervous system. NEDD4 downregulates both neuronal voltage-gr. Na+ channels (NAVs) and epithelial Na+ channels (ENaCs) in response to increased intracellular Na+ concentrations.         NEDD4L       Smad2, PTEN       NEDD4L is an E3 ubiquitin ligase highly expressed in the early mouse embryonic central nervous system. NEDD4L has been shown to negatively regulate TGF-β signaling by targeting Smad2 for degradation.         NEURL       Jagged 1, Delta       NEURL is an E3 ubiquitin ligase involved in Notch signaling and neurological determination of cell fate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e         19398561, 18308511           ted         9618557, 9792722           a         19917253, 17218260           17003037, 11696324           ida-         12826607                                                                                                                                                                                                                                              |
| NEDD4         Smad2, PTEN         NEDD4L is an E3 ubiquitin ligase highly expressed in the early mouse embryonic central nervous system. NEDD4L has been shown to negatively regulat TGF-β signaling by targeting Smad2 for degradation.           NEURL         Jagged 1, Delta         NEURL is an E3 ubiquitin ligase involved in Notch signaling and neurological determination of cell fate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>3010337, 3132122</li> <li>319917253, 17218260</li> <li>17003037, 11696324</li> <li>12826607</li> </ul>                                                                                                                                                                                                                                                                                                      |
| NEUD4L         Smad2, PTEN         NEUD4L is an E3 ubiquitin ligase nighty expressed in the early mouse embryonic central nervous system. NEUD4L has been shown to negatively regulat           NEURL         Jagged 1, Delta         NEURL is an E3 ubiquitin ligase involved in Notch signaling and neurological determination of cell fate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17003037, 11696324<br>12826607                                                                                                                                                                                                                                                                                                                                                                                       |
| NEURL Jagged 1, Delta NEURL is an E3 ubiquitin ligase involved in Notch signaling and neurological determination of cell fate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17003037, 11696324<br>1da- 12826607                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ada- 12826607                                                                                                                                                                                                                                                                                                                                                                                                        |
| OSTM1 Gai3 OSTM1 is an E3 ubiquitin ligase localized to the cell membrane that regulates membrane associated G-proteins by ubiquitination and proteasomal degr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PARC PARC is a cullin family member that acts as a p53-binding cytoplasmic anchor protein and is part of an atypical cullin-RING- based E3 ubiquitin ligase complex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12526791                                                                                                                                                                                                                                                                                                                                                                                                             |
| Parkin Pael-R, CDC-rel, PLC-g1 Parkin is an E3 ubiquitin ligase that has been shown to be a key regulator of the autophagy pathway. Mutations in Parkin can lead to Parkinson's Diseas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 20074049, 18671761, 17553932, 16672220                                                                                                                                                                                                                                                                                                                                                                             |
| PCGF1 H2A, K119 PCGF1 is a component of the polycomb group multiprotein PRC1- like (PcG PRC1) complex. PCGF1 is required for PcG PRC1 mediated monoubiquitinal H2A Lys119, which is central to the histone code and gene regulation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on of 18460542                                                                                                                                                                                                                                                                                                                                                                                                       |
| PELI1 TRIP, IRAK PELI1 is an E3 ubiquitin ligase that plays a role in Toll-like Receptor (TLR3 and TLR4) signaling to NF-κB via the TRIP adaptor protein. PELI1 has also been shown to ubiquitinate IRAK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n 19734906, 17675297                                                                                                                                                                                                                                                                                                                                                                                                 |
| PEX10 Pex5 PEX10 is localized to peroxisome membranes and has been associated with several peroxisomal biogenesis disorders.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15283676                                                                                                                                                                                                                                                                                                                                                                                                             |
| PJA1 ELF PJA1 is also known as PRAJA. PJA1 plays a role in downregulating TGF-β signaling in gastric cancer via ubiquitination of the Smad4 adaptor protein ELJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16096365                                                                                                                                                                                                                                                                                                                                                                                                             |
| PJA2 PJA2 is an E3 ubiquitin ligase found in neuronal synapses. The exact role and substrates of PJA2 are unclear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12036302                                                                                                                                                                                                                                                                                                                                                                                                             |
| RAD18         PCNA         RAD18 is an E3 ubiquitin ligase involved in post-replication repair of UV-damaged DNA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17720710, 18245774                                                                                                                                                                                                                                                                                                                                                                                                   |
| RBCK1 SOCS6, PKC, TAB2/3 RBCK1 is an E3 ligase that acts as an iron sensor by promoting the ubiquitination of oxidized IREB2 in the presence of high iron and oxygen. RBCK1 is a component of the LUBAC (linear ubiquitin chain assembly complex).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17449468, 16643902,                                                                                                                                                                                                                                                                                                                                                                                                  |
| RCHY1 P27, KIP1, P53 RCHY1, also known as Pirh2, is an E3 ubiquitin ligase that contributes to the regulation of the cell cycle. RCHY1 is primarily associated with the ubiquitir and proteasomal degradation of tetrameric p53.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ation 12654245, 18006823,<br>18344599                                                                                                                                                                                                                                                                                                                                                                                |
| RFFL p53 RFFL is also known as CARP2 and is an E3 ubiquitin ligase that inhibits endosome recycling. RFFL also degrades p53 through stabilization of MDM2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15229288, 18382127                                                                                                                                                                                                                                                                                                                                                                                                   |
| RFWD2 MTA1, p53, FoxO1 RFWD2 is also known as COP1. RFWD2 is an E3 ubiquitin ligase that ubiquitinates several proteins involved in the DNA damage response and apoptosis including MTA1, p53, and FoxO1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19805145, 16931761,<br>18815134                                                                                                                                                                                                                                                                                                                                                                                      |
| Rictor SGK1 Rictor interacts with Cullin1-Rbx1 to form an E3 ubiquitin ligase complex and promotes ubiquitination and degradation of SGK1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20832730                                                                                                                                                                                                                                                                                                                                                                                                             |
| HING I H2A, K119 | 1 10359901                                                                                                                                                                                                                                                                                                                                                                                                           |
| HNF2 H2A, K119, Geminin KNF2, also known as King2, is an E3 blogluin ligase of the polycomb group multiprotein PKC1-like (PCG PKC1) complex. HNF2 is required for PCG PKC ated monoubiquitination of H2A Lys119, which is central to the histone code and gene regulation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | neal- 17157253, 15509584                                                                                                                                                                                                                                                                                                                                                                                             |
| RNF5         JAMP, paxillin         RNF5 is also known as RMA5. RNF5 plays a role in ER-associated degradation of misfolded proteins and ER stress response through ubiquitination of JA           RNF5         RNF5 also plays a role in cell motility and has been shown to ubiquitinate paxillin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MP. 19269966, 12861019                                                                                                                                                                                                                                                                                                                                                                                               |
| RNF6 LIM1, Androgen receptor RNF6 is an E3 ubiquitin ligase involved in the regulation of cell motility and differentiation. RNF6 targets LIMK for ubiquitination and degradation, inhibitir cytoskeleton stability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g 16204183                                                                                                                                                                                                                                                                                                                                                                                                           |
| RNF8 H2A, H2AX RNF8 is a RING domain E3 ubiquitin ligase that plays a role in the repair of damaged chromosomes. RNF8 ubiquitinates Histone H2A and H2A.X at doub strand breaks (DSBs) which recruits 53BP1 and BRCA1 repair proteins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e- 18001824                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>RNF11</b> Smurf2 RNF11 is a required component of a ubiquitin-editing protein complex involved in modifying cellular inflammatory response to LPS and TNF signaling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14562029                                                                                                                                                                                                                                                                                                                                                                                                             |
| RNF12 CLIM, Ldb1, Ldb2 RNF12, also known as RLIM, is an E3 ubiquitin ligase. RNF12 is involved in telomere regulation and X chromosome inactivation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12874135, 11882901                                                                                                                                                                                                                                                                                                                                                                                                   |
| RNF19 SUD1 RNF19 is also known as Dorfin. Accumulation and aggregation of mutant SOD1 leads to ALS disease. RNF19 ubiquitinates mutant SOD1 protein, causin decrease in neurotoxicity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ja 19610091                                                                                                                                                                                                                                                                                                                                                                                                          |
| HNF20 Histone H2B RNF20 is also known as BRE1. RNF20 is an E3 ubiquitin ligase that monoubiquitinates Histone H2B. H2B ubiquitination is associated with areas of activ transcription.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18832071                                                                                                                                                                                                                                                                                                                                                                                                             |
| RNF34 Caspase-8, -10 RNF34 is also known as RFI. RNF34 inhibits death receptor mediated apoptosis through ubiquitination/degradation of caspase-8 and -10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16596200                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>RNF40</b> Histone H2B RNF40 is also known as BRE1-B. RNF40 forms a protein complex with RNF20 resulting in the ubiquitination of Histone H2B. H2B ubiquitination is assoc with areas of active transcription.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ated 16307923                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>RNF41</b> ErbB3, BIRC6, Parkin RNF41 is an E3 ubiquitin ligase that has been implicated in the regulation of hematopoietic progenitor cell differentiation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14765125, 12411582,<br>18541373                                                                                                                                                                                                                                                                                                                                                                                      |
| RNF111 Smad, SnoN, c-Ski RNF111 is an E3 ubiquitin ligase that participates in mesoderm patterning by promoting the ubiquitination and proteasomal degradation of downstream Smads.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18451154, 14657019,<br>17591695                                                                                                                                                                                                                                                                                                                                                                                      |
| RNF123 CDKN1B RNF123 is an E3 ubiquitin ligase that functions as part of the KPC complex. RNF123 aids in cell cycle regulation by targeting CDKN1B for ubiquitination proteasomal degradation during G1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and 15531880                                                                                                                                                                                                                                                                                                                                                                                                         |
| RNF125 RNF125 is also known as TRAC-1. RNF125 has been shown to positively regulate T cell activation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17990982                                                                                                                                                                                                                                                                                                                                                                                                             |
| RNF128 RNF128 is also known as GRAIL. RNF128 promotes T cell anergy and may play a role in actin cytoskeletal organization in T cell/APC interactions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19833735                                                                                                                                                                                                                                                                                                                                                                                                             |
| RNF135 RIG-1 RNF135 is an E3 ubiquitin ligase involved in viral innate immunity. RNF135 targets the cytoplasmic viral nucleic acid receptor RIG-1 for ubiquitination an degradation by the proteasome.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 19017631                                                                                                                                                                                                                                                                                                                                                                                                           |
| RNF138 TCF/LEF RNF138 is also known as NARF. RNF138 is associated with Nemo-like Kinase (NLK) and suppresses Wnt/β-Catenin signaling through ubiquitination/deg tion of TCF/LEF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ada- 16714285                                                                                                                                                                                                                                                                                                                                                                                                        |
| RNF167 TSSC5 (SLC22A18) RNF167 may act as an E3 ubiquitin ligase involved in the regulation of kidney transporter function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16314844                                                                                                                                                                                                                                                                                                                                                                                                             |
| RNF168 H2A, H2A.X RNF168 is an E3 ubiquitin ligase that helps protect genome integrity by working together with RNF8 to ubiquitinate Histone H2A and H2A.X at DNA dout strand breaks (DSB).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | le- 19203579                                                                                                                                                                                                                                                                                                                                                                                                         |

Kinase Phosphatase Transcription Factor

Caspase Receptor

![](_page_42_Picture_5.jpeg)

GAP/GEF GTPase

![](_page_42_Picture_7.jpeg)

Acetylase Deacetylase

#### www.cellsignal.com <u>44</u>

| Ligase     | Substrate                        | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |
|------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| RNF180     | Zic2                             | RNF180 is an E3 ubiquitin ligase involved in neurological development. RNF180 targets the ZIC2 transcription factor for polyubiquitination and degradation by the proteasome.                                                                                                                                                                                                                                                                                                       |                                             |
| RNF182     | ATP6VOC                          | RNF 182 is an E3 ubiquitin ligase that targets ATP6VOC, a component of vacuolar ATPase, for polyubiquitination and degradation by the proteasome.                                                                                                                                                                                                                                                                                                                                   | 18298843                                    |
| RNF190     |                                  | see MARCH-X                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             |
| SCF/FBW7   | Cyclin-E, c-Myc, c-Jun           | SUF/FBW/ is an E3 ubiquitin ligase complex composed of SCF (SKP1-CUL1-F-box protein) and the substrate recognition component, FBW/. SCF/FBW7<br>mediates the ubiquitination of proteins involved in cell cycle progression, signal transduction, and transcription. Target proteins for SCF/FBW7 include the<br>phosphorylated forms of c-Myc, Cyclin E, Notch intracellular domain (NICD), and c-Jun. Research has found that defects in FBXW7 may be a cause of breast<br>cancer. | 11533444, 15150404,<br>16023596             |
| SCF/FBXL3  | CRY1, CRY2                       | SCF/FBXL3 is an E3 ubiquitin ligase complex composed of SCF (SKP1-CUL1-F-box protein) and the substrate recognition component, FBXL3. SCF/FBXL3 mediates circadian clock function by ubiquitination and subsequent degradation of CRY1 and CRY2.                                                                                                                                                                                                                                    | 17463251, 17463252,<br>17462724             |
| SCF/FBXL5  | IRP2                             | SCF/FBXL5 is an ubiquitin ligase complex also known as SCF (SKP1-cullin-F-box). FBXL5 is an F-box protein that functions as an iron sensor by promoting the ubiquitination and subsequent degradation of IREB2/IRP2 under high iron and oxygen conditions.                                                                                                                                                                                                                          | 19762597, 19762596                          |
| SCF/FBXL14 | SNAIL1                           | SCF/FBXL14 is an E3 ubiquitin ligase complex composed of SCF (SKP1-CUL1-F-box protein) and the substrate-recognition component FBXL14. The SCF/<br>FBXL14 complex is thought to contribute to mesoderm formation by ubiquitination and subsequent degradation of SNAI1.                                                                                                                                                                                                             | 19955572                                    |
| SCF/FBXL15 | Timeless, SMURF1,<br>SMURF2      | SCF/FBXL15 is an E3 ubiquitin ligase complex composed of SCF (SKP1-CUL1-F-box protein) and the substrate-recognition component FBXL15. FBXL15 tar-<br>gets negative regulators of the BMP signaling pathway, including SMURF1 and SMURF2, for ubiquitination and subsequent proteasomal degradation. FBXL15<br>is required for dorsal/ventral pattern formation and bone mass maintenance. SCF/FBXL15 also targets the Drosophila circadian clock protein timeless.                 | 16794082, 21572392                          |
| SCF/FBXL20 | RIM1                             | SCF/FBXL20 is an E3 ubiquitin ligase complex composed of SCF (SKP1-CUL1-F-box protein) and the substrate-recognition component FBXL20. FBXL20 is<br>localized to the synapse and its regulation of RIM1by ubiquitination may play a role in neural transmission.                                                                                                                                                                                                                    | 17803915                                    |
| SCF/FBX01  | CP110                            | SCF/FBX01 is an E3 ubiquitin ligase complex composed of SCF (SKP1-CUL1-F-box protein) and the substrate-recognition component FBX01. FBX01 targets<br>Cp110 for ubiquitination and subsequent proteasomal degradation during cell cycle G2 phase, thereby inhibiting centrosome reduplication.                                                                                                                                                                                      | 20596027                                    |
| SCF/FBX02  | Pre-integrin β1, CFTR            | SCF/FBXO2 is an E3 ubiquitin ligase complex composed of SCF (SKP1-CUL1-F-box protein) and the substrate-recognition component FBXO2. FBXO2 targets<br>misfolded glycoproteins for ubiquitination and proteasomal degradation by recognition of sugar chains in the endoplasmic reticulum-associated degradation<br>(ERAD) pathway.                                                                                                                                                  | 12140560                                    |
| SCF/FBX03  | HIPK2, p300                      | SCF/FBXO3 is an E3 ubiquitin ligase complex composed of SCF (SKP1-CUL1-F-box protein) and the substrate-recognition component FBXO3. FBXO3 targets<br>HIPK2 and p300 for ubiquitination and rapid degradation by the proteasome. The inclusion of PML in a complex with SCF/FBXO3, HIPK2, and p300 delays<br>degradation of HIPK2 and allows synergistic activation of p53/TP53-dependent transactivation.                                                                          | 18809579                                    |
| SCF/FBX04  | TERF1                            | SCF/FBX04 is an E3 ubiquitin ligase complex composed of SCF (SKP1-CUL1-F-box protein) and the substrate-recognition component FBX04. FBX04 may<br>play a role in telomere homeostasis by recognition of TERF1 and promotion of its ubiquitination together with UBE2D1.                                                                                                                                                                                                             | 17081987                                    |
| SCF/FBX06  | Chk1                             | SCF/FBX06 is an E3 ubiquitin ligase complex composed of SCF (SKP1-CUL1-F-box protein) and the substrate-recognition component FBX06. FBX06 targets<br>misfolded glycoproteins for ubiquitination and proteasomal degradation by recognition of sugar chains in the endoplasmic reticulum-associated degradation<br>(ERAD) pathway. FBX06 also targets the kinase Chk1, a cell cycle regulator involved in entry into mitosis.                                                       | 19716789                                    |
| SCF/FBX07  | BIRC2, DLGAP5                    | SCF/FBX07 is an E3 ubiquitin ligase complex composed of SCF (SKP1-CUL1-F-box protein) and the substrate-recognition component FBX07. SCF/FBX07 targets BIRC2 (cIAP1), an inhibitor of apoptosis, and DLGAP5, a cell cycle regulator, for ubiquitination and proteasomal degradation.                                                                                                                                                                                                | 16510124                                    |
| SCF/FBX031 | Cyclin D1                        | SCF/FBX031 is an E3 ubiquitin ligase complex composed of SCF (SKP1-CUL1-F-box protein) and the substrate-recognition component FBX031. FBX031 is<br>also known as FBX014. SCF/FBX031 targets phosphorylated cyclin D1 for ubiquitination and degradation by the proteasome, resulting in G1 cell cycle arrest.                                                                                                                                                                      | 19412162                                    |
| SCF/FBX042 | p53                              | SCF/FBX042 is an E3 ubiquitin ligase complex composed of SCF (SKP1-CUL1-F-box protein) and the substrate-recognition component FBX042. FBX042 targets p53/TP53 for ubiquitination and degradation by the proteasome.                                                                                                                                                                                                                                                                | 19509332                                    |
| SCF/FBX045 | UNC13A, p73                      | SCF/FBX045 is an E3 ubiquitin ligase complex composed of SCF (SKP1-CUL1-F-box protein) and the substrate-recognition component FBX045. SCF/FBX045<br>aids in the regulation of neurotransmission at mature neurons by targeting UNC13A for ubiquitin dependent degradation by the proteasome. FBX045 also<br>targets the apoptotic protein p73 for ubiquitination and degradation.                                                                                                  | 19581926                                    |
| SCF/FBXW5  | SASS6                            | SCF/FBXW5 is an E3 ubiquitin ligase complex composed of SCF (SKP1-CUL1-F-box protein) and the substrate recognition component, FBXW5. SCF/FBXW5 mediates the ubiquitination of SASS6, preventing centriole duplication.                                                                                                                                                                                                                                                             | 18381890                                    |
| SCF/FBXW10 | CBX1, CBX5                       | SCF/FBXW10 is an E3 ubiquitin ligase complex composed of SCF (SKP1-CUL1-F-box protein) and the substrate recognition component, FBXW10. SCF/<br>FBXW10 has been shown to contribute to gene expression by degradation of heterochromatin components CBX5 and CBX1                                                                                                                                                                                                                   | 20498703                                    |
| SCF/Skp2   | p27, p21, FoxO1                  | SCF/Skp2 is an E3 ubiquitin ligase complex composed of SCF (SKP1-CUL1-F-box protein) and the substrate recognition component, Skp2. SCF/Skp2 medi-<br>ates the ubiquitination of proteins involved in cell cycle progression (specifically the G1/S transition), signal transduction and transcription. Target proteins for<br>SCF/Skp2 include the phosphorylated forms of p27Kip1, p21Waf1/Cip1, and FoxO1.                                                                       | 15668399, 10559916                          |
| SCF/β-TrCP | lκBa, Wee1, Cdc25A,<br>β-Catenin | SCF/β-TrCP is an E3 ubiquitin ligase complex composed of SCF (SKP1-CUL1-F-box protein) and the substrate recognition component, β-TrCP (also known as BTRC). SCF/β-TrCP mediates the ubiquitination of proteins involved in cell cycle progression, signal transduction, and transcription. SCF/β-TrCP also regulates the stability of β-catenin and participates in Wnt signaling.                                                                                                 | 10230406, 15070733,<br>14603323, 10339577   |
| SHPRH      | PCNA                             | SHPRH is an E3 ubiquitin ligase that plays a role in DNA replication through ubiquitination of PCNA. PCNA ubiquitination prevents genomic instability from<br>stalled replication forks after DNA damage.                                                                                                                                                                                                                                                                           | 18719106                                    |
| SIAH1      | $\beta$ -catenin, Bim, TRB3      | SIAH1 is an E3 ubiquitin ligase that plays a role in inhibition of Wnt signaling through ubiquitination of β-catenin. SIAH1 has also been shown to promote<br>apoptosis through upregulation of Bim, and to ubiquitinate the signaling adaptor protein TRB3.                                                                                                                                                                                                                        | 16413921, 19775288,<br>18276110             |
| SIAH2      | HIPK2, PHD1/3                    | SIAH2 is an E3 ubiquitin ligase that plays a role in hypoxia through ubiquitination and degradation of HIPK2. SIAH2 also ubiquitinates PHD1/3, which regulates levels of HIF-1a in response to hypoxia.                                                                                                                                                                                                                                                                             | 19043406, 15210114                          |
| SMURF1     | Smad1/5, RhoA, MEKK2             | SMURF1 is an E3 ubiquitin ligase that interacts with BMP pathway Smad effectors, leading to Smad protein ubiquitination and degradation. Smurf1 negatively regulates osteoblast differentiation and bone formation in vivo.                                                                                                                                                                                                                                                         | 10458166, 15820682                          |
| SMURF2     | Smads, Mad2                      | SMURF2 is an E3 ubiquitin ligase that interacts with Smads from both the BMP and TGF- $\beta$ pathways. SMURF2 also regulates the mitotic spindle checkpoint through ubiquitination of Mad2.                                                                                                                                                                                                                                                                                        | 11158580, 18852296                          |
| SYVN1      | ERAD, Pael-R, p53,IRE-1          | SYVN1 is an E3 ubiquitin ligase involved in the ER-associated degradation (ERAD) pathway. SYVN1 targets misfolded proteins and appropriately folded short-<br>lived proteins for ubiquitination and degredation by the proteasome.                                                                                                                                                                                                                                                  | 14593114, 17059562,<br>17170702, 18369366   |
| TOPORS     | p53, NKX3.1                      | TOPORS is an E3 ubiquitin ligase and a SUMO ligase. TOPORS ubiquitinates and sumoylates p53, which regulates p53 stability. TOPORS has also been shown to ubiquitinate the tumor suppressor NKX3.1.                                                                                                                                                                                                                                                                                 | 19473992, 18077445                          |
| TRAF2      | Rip1, other TRAFs                | TRAF2 is a weak E3 ubiquitin ligase that acts as a component of several ubiquitination complexes. TRAF2 ligase activity is activated in the presence of<br>cytoplasmic sphingosine-1-phosphate. TRAF2 is a major regulator of the apoptosis and cell survival machinery.                                                                                                                                                                                                            | 11909853, 15175328                          |
| TRAF6      | NEMO, Akt1                       | TRAF6 is an E3 ubiquitin ligase that functions as an adaptor protein in IL-1R, CD40, and TLR signaling. TRAF6 promotes NF-KB signaling through K63 polyu-<br>biquitination of IKK, resulting in IKK activation. TRAF6 has also been shown to ubiquitinate Akt1, causing its translocation to the cell membrane.                                                                                                                                                                     | 19713527, 11057907                          |
| TRAF7      |                                  | TRAF7 is an E3 ubiquitin ligase and SUMO ligase that functions as an adaptor protein in TNF Receptor and TLR signaling. TRAF7 has been shown to be<br>capable of self-ubiquitination and plays a role in apoptosis via MEKK3-mediated activation of NF-kB.                                                                                                                                                                                                                          | 15001576                                    |
| TRIAD3     | TLRs, RIP1                       | Triad 3 is an E3 ubiquitin ligase found in peripheral blood leukocytes of the immune system that regulates antiviral and cytokine induced cellular responses.                                                                                                                                                                                                                                                                                                                       | 15107846, 16968706                          |
| TRIM8      | Humanin, ARC105, Pax6            | TRIMING IS AN ES UDIQUIUM ligase that regulates cytokine induced signal transduction by targeting SUCS I for ubiquitination and degradation by the proteasome.<br>TRIM11 is an E3 ubiquitin ligase that may promote the degradation of insoluble ubiquitinated proteins. TRIMM11 may also aid in anti-viral cellular functions.                                                                                                                                                     | 12103497<br>12670303, 16904669,<br>18628401 |
|            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |

.....

Transcriptional Inhibition

![](_page_43_Picture_7.jpeg)

Joining of Subunits ----> Translocation

| Ligase | Substrate                      | Function                                                                                                                                                                                                                                                                                                                                                                    | PMID                            |
|--------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| TRIM13 |                                | TRIM13 is an E3 ubiquitin ligase that targets membrane and secretory proteins for ubiquitination and proteasomal degradation in the endoplasmic reticulum-<br>associated degradation (ERAD) pathway.                                                                                                                                                                        | 17314412                        |
| TRIM21 | IgG1 HC, IRF3                  | TRIM21 is an E3 ubiquitin ligase involved in intracellular antibody-mediated degradation of viral components by the proteasome.                                                                                                                                                                                                                                             | 18022694, 18641315              |
| TRIM25 | RIG-1                          | TRIM25 is an E3 ubiquitin ligase involved in viral innate immunity. TRIM25 targets the cytoplasmic viral nucleic acid receptor RIG-1 for ubiquitination and degradation by the proteasome.                                                                                                                                                                                  | 12075357                        |
| TRIM32 | actin, piasy                   | TRIM32 is an E3 ubiquitin ligase involved in viral lysosome related vesicle trafficking. TRIM32 targets DTNBP1 for ubiquitination and degradation by the proteasome. TRIM32 may also mediate the activity of HIV Tat proteins.                                                                                                                                              | 14578165, 16243356              |
| TRIM33 | Smad4                          | TRIM33 is an E3 ubiquitin ligase involved in the regulation of the TGF-b/ BMP signaling pathway. TRIM33 targets SMAD4 for ubiquitination, nuclear exclusion, and proteasomal degradation.                                                                                                                                                                                   | 15820681                        |
| TRIM41 | PKC                            | TRIM41 is an E3 ubiquitin ligase that targets protein kinase C for ubiquitination and proteasomal degradation.                                                                                                                                                                                                                                                              | 17893151                        |
| TRIM54 |                                | TRIM54 is an E3 ubiquitin ligase that may target and stabilize microtubules.                                                                                                                                                                                                                                                                                                | 15967462                        |
| TRIM55 |                                | TRIM55 is an E3 ubiquitin ligase that may regulate gene expression and protein turnover in muscle cells                                                                                                                                                                                                                                                                     | 15967462                        |
| TRIM63 | Troponin I, MyBP-C,<br>MyLC1/2 | TRIM63 is also known as Murf-1. TRIM63 is a muscle-specific E3 ubiquitin ligase whose expression is upregulated during muscle atrophy. TRIM63 has been shown to ubiquitinate several important muscle proteins including troponin I, MyBP-C, and MyLC1/2.                                                                                                                   | 19506036                        |
| UBE3B  |                                | UBE3B is an E3 ubiquitin ligase identified through sequence analysis. The specific substrates and cellular function of UBE3B is currently unknown.                                                                                                                                                                                                                          | 12837265                        |
| UBE3C  |                                | UBE3C is an E3 ubiquitin ligase also known as KIAA10. UBE3C is highly expressed in muscle and may interact with the transcriptional regulator TIP120B.                                                                                                                                                                                                                      | 12692129                        |
| UBR1   |                                | UBR1 is an E3 ubiquitin ligase responsible for proteasomal degradation of misfolded cytoplasmic proteins. UBR1 has also been shown to be a ubiquitin ligase of the N-end rule proteolytic pathway, which regulates degradation of short-lived proteins.                                                                                                                     | 19041308, 17962019              |
| UBR2   | Histone H2A                    | UBR2 is an E3 ubiquitin ligase that has been shown to ubiquitinate histone H2A, resulting in transcriptional silencing. UBR2 is also part of the N-end rule proteolytic pathway.                                                                                                                                                                                            | 20080676, 19008229              |
| UHRF1  | Histone H3                     | UHRF1 is an epigenetic regulator that is also a putative E3 ubiquitin ligase.                                                                                                                                                                                                                                                                                               | 14993289                        |
| UHRF2  | PCNP                           | UHRF2 is also known as NIRF. UHRF2 is a nuclear protein that may regulate cell cycle progression through association with Chk2. UHRF2 also ubiquitinates<br>PCNP and has been shown to play a role in degradation of nuclear aggregates containing polyglutamine repeats.                                                                                                   | 15178429, 14741369,<br>19218238 |
| VHL    | HIF-1a                         | VHL is the substrate recognition component of the ECV (Elongin B/C, Cullen-2, VHL) E3 ubiquitin ligase complex responsible for degradation of the transcription factor HIF-1a. Ubiquitination and degradation of HIF-1a takes place only during periods of normoxia, but not during hypoxia, thereby playing a central role in the regulation of gene expression by oxygen. | 11292862                        |
| VPS18  | SNK                            | VPS18 is an E3 ubiquitin ligase that regulates intracellular vesicle trafficking. VPS18 may also regulate the POLO-like kinase SNK during the cell cycle.                                                                                                                                                                                                                   | 16203730                        |
| WWP1   | ErbB4                          | WWP1 is an E3 ubiquitin ligase commonly found to be overexpressed in breast cancer. WWP1 has been shown to ubiquitinate and degrade ErbB4. Interest-<br>ingly, the WWP1 homolog in C. elegans was found to increase life expectancy in response to dietary restriction.                                                                                                     | 19561640, 19553937              |
| WWP2   | oct-4, PTEN                    | WWP2 is an E3 ubiquitin ligase that has been shown to ubiquitinate/degrade the stem cell pluripotency factor Oct-4. WWP2 also ubiquitinates the transcription factor EGR2 to inhibit activation-induced T cell death.                                                                                                                                                       | 19274063, 19651900,<br>21532586 |
| ZNRF1  |                                | ZNRF1 is an E3 ubiquitin ligase highly expressed in neuronal cells. ZNRF1 is found in synaptic vesicle membranes and may regulate neuronal transmissions<br>and plasticity.                                                                                                                                                                                                 | 14561866                        |
|        |                                |                                                                                                                                                                                                                                                                                                                                                                             |                                 |

### Deubiquitinase Table

The Deubiquitinase Table provides a list of deubiquitinases, along with their substrates (when known) and corresponding references. This table was generated using PhosphoSitePlus<sup>®</sup>, Cell Signaling Technology's protein modification resource. See page 4 for more information on PhosphoSitePlus<sup>®</sup>.

We would like to thank Prof. Wenyi Wei, Beth Israel Deaconess Medical Center, Harvard Medical School, for contributing to this table.

| Deub | piquitinase | Table | Э |
|------|-------------|-------|---|
|------|-------------|-------|---|

| Ligase   | Substrate             | Function                                                                                                                                                                                                                                                                                | PMID               |
|----------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| STAMBP   |                       | STAM-binding protein (STAMBP or AMSH) is an endosomal deubiquitination enzyme that preferentially displays ubiquitin isopeptidase activity toward K63-<br>linked chains.                                                                                                                | 18758443           |
| STAMBPL1 |                       | STAM-binding protein-like 1 (STAMBPL1 or AMSHLP) is a deubiquitination enzyme that preferentially displays ubiquitin isopeptidase activity toward K63-<br>linked chains.                                                                                                                | 18758443           |
| ATXN3    | RAD23A, RAD23B        | ATXN3 is a transcriptional regulation deubiquitination enzyme that preferentially displays ubiquitin isopeptidase activity toward long, four or greater, ubiquitin chains.                                                                                                              | 17696782           |
| ATXN3L   |                       | ATXN3-like is a deubiquitination enzyme that displays ubiquitin isopeptidase activity toward K48- and K63-linked chains.                                                                                                                                                                | 21118805           |
| BRCC36   | FAM175A/Abraxas       | BRCC36 (BRCC3) is a deubiquitination enzyme that preferentially displays ubiquitin isopeptidase activity toward K63-linked chains. BRCC36 targets K63-<br>linked ubiquitin chains on H2A and H2X at the site of DNA double strand breaks as a component of the BRCA complex.            | 14636569, 16707425 |
| COPS5    | TP53, MIF, JUN, UCHL1 | COPS5 (CSN5) is the protease subunit of the COP9 signalosome complex (CSN), a key regulator of the ubiquitin conjugation pathway. COPS5 is essential for the CSN isopeptidase activity responsible for deneddylation of cullin-RING E3 ubiquitin ligase complexes.                      | 9535219, 11285227  |
| DUB3     | CDC25A                | DUB3 is a deubiquitination enzyme that preferentially displays ubiquitin isopeptidase activity toward CDC25A, preventing CDC25A degradation and allowing cell cycle progression.                                                                                                        | 14699124, 20228808 |
| JOSD1    |                       | JOSD1 is a deubiquitination enzyme that displays low ubiquitin isopeptidase activity in vitro.                                                                                                                                                                                          | 21118805           |
| JOSD2    |                       | JOSD2 is a deubiquitination enzyme that displays ubiquitin isopeptidase activity toward K63-linked chains, and to a lesser extent K48-linked chains.                                                                                                                                    | 17696782, 21118805 |
| MPND     |                       | MPND is an MPN domain and JAMM motif-containing protein with predicted ubiquitin isopeptidase activity.                                                                                                                                                                                 |                    |
| MYSM1    | H2A                   | MYSM1 is a deubiquitinating enzyme that acts as a transcriptional co-activator by directing preferential ubiquitin isopeptidase activity toward monoubiqui-<br>nated H2A in hyperacetylated nucleosomes.                                                                                | 17707232           |
| OTU1     | VCP                   | OTU1, also known as YOD1, is a deubiquitination enzyme that displays ubiquitin isopeptidase activity toward K48- and K63-linked polyubiquitin or di-ubiquitin chains. OTU1 is a part of the endoplasmic reticulum-associated degradation (ERAD) pathway for misfolded lumenal proteins. | 19818707           |
| OTUB1    | RNF128                | OTUB1 is a deubiquitination enzyme that preferentially displays ubiquitin isopeptidase activity toward polyubiquitinated K48-linked chains. OTUB1 regulates<br>protein turnover by preventing degradation and also plays a unique role in the regulation of T cell anergy.              | 12704427, 14661020 |
| OTUB2    |                       | OTUB2 is a deubiquitination enzyme that displays ubiquitin isopeptidase activity toward K48- and K63-linked chains. OTUB2 regulates protein turnover by<br>preventing degradation.                                                                                                      | 12704427, 18954305 |

![](_page_44_Picture_7.jpeg)

![](_page_44_Picture_9.jpeg)

![](_page_44_Picture_10.jpeg)

![](_page_44_Picture_11.jpeg)

![](_page_44_Picture_12.jpeg)

© 2007–2013 Cell Signaling Technology, Inc.

| Deubiquitinase       | Table                                  |                                                                                                                                                                                                                                                                                                                                                                                   |                                 |
|----------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Ligase               | Substrate                              | Function                                                                                                                                                                                                                                                                                                                                                                          | PMID                            |
| OTUD1                |                                        | OTUD1 is a member of the deubiquitinating enzyme ovarian tumor domain (OTU) superfamily.                                                                                                                                                                                                                                                                                          | 17991829                        |
| OTUD3                |                                        | OTUD3 is a member of the deubiquitinating enzyme ovarian tumor domain (OTU) superfamily.                                                                                                                                                                                                                                                                                          | 17991829                        |
| OTUD4                |                                        | OTUD4 is a member of the deubiquitinating enzyme ovarian tumor domain (OTU) superfamily.                                                                                                                                                                                                                                                                                          | 17991829                        |
| OTUD5                | TRAF3                                  | OTUD5 is a deubiquitination enzyme that displays ubiquitin isopeptidase activity toward K48- and K63-linked chains. OTUD5 negatively regulates type I interferon (IFN) production by deubiquitination of TRAF3.                                                                                                                                                                   | 17991829                        |
| OTUD6A               |                                        | OTUD6A is a member of the deubiquitinating enzyme ovarian tumor domain (OTU) superfamily.                                                                                                                                                                                                                                                                                         | 17991829                        |
| OTUD6B               |                                        | OTUD6B is a member of the deubiquitinating enzyme ovarian tumor domain (OTU) superfamily.                                                                                                                                                                                                                                                                                         | 17991829                        |
| OTUD7A/<br>Cezanne 2 |                                        | OTUD7A is a deubiquitination enzyme that displays ubiquitin isopeptidase activity toward K48- and K63-linked chains.                                                                                                                                                                                                                                                              | 12682062                        |
| OTUD7B/<br>Cezanne   | TRAF6                                  | OTUD7B is a deubiquitination enzyme that displays ubiquitin isopeptidase activity toward K48- and K63-linked chains. OTUD7B negatively regulates NF-KB.                                                                                                                                                                                                                           | 11463333                        |
| OTUD7C/A20           | NAF1, TAX1BP1, TRAF2                   | OTUD7C is a ubiquitination-editing enzyme that displays ubiquitin isopeptidase activity toward K63-linked chains and ubiquitination of K48-linked chains.<br>OTUD7C is an essential regulator of inflammatory signaling pathways in the lymphoid system.                                                                                                                          | 9882303, 14748687               |
| POH1                 |                                        | POH1 is the metalloprotease deubiquitination enzyme component of the 26S proteasome that displays ubiquitin isopeptidase activity toward K63-linked chains.                                                                                                                                                                                                                       | 9374539, 19214193               |
| PRPF8                | SNRP116, WDR57/<br>SPF38               | PRPF8 is a member of the deubiquitinating enzyme metalloprotease JAMM domain superfamily. PRPF8 is known to be a central component of the spliceo-<br>some, while PRPF8 ubiquitin isopeptidase activity is controversial.                                                                                                                                                         | 2139226, 8702566                |
| TRABID               | TRAF6, APC                             | TRABID is a deubiquitination enzyme that preferentially displays ubiquitin isopeptidase activity toward K63-linked chains. TRABID acts as a positive regulator of the Wnt signaling pathway by deubiquitinating APC protein, a Wnt signaling pathway negative regulator.                                                                                                          | 18281465, 21834987              |
| UCHL1                | COPS5                                  | UCHL1 is a member of the ubiquitin C-terminal hydrolase (UCH) deubiquitinase superfamily. UCHL1 functions as a ubiquitin hydrolase involved in the<br>processing of both ubiquitin precursors and ubiquitinated substrates, generating free monomeric Ub.                                                                                                                         | 9790970                         |
| UCHL2/BAP1           | BRCA1, HCFC1                           | UCHL1/Bap1 is a member of the ubiquitin C-terminal hydrolase (UCH) deubiquitinase superfamily. UCHL1/ Bap1 is a BRCA1-associated, nuclear localized ubiquitin hydrolase that suppresses cell growth.                                                                                                                                                                              | 9528852                         |
| UCHL3                | ENAC                                   | UCHL3 is a member of the ubiquitin C-terminal hydrolase (UCH) deubiquitinase superfamily. UCHL3 functions as a ubiquitin hydrolase involved in the<br>processing of both ubiquitin precursors and ubiquitinated substrates, generating free monomeric Ub. UCHL3 shows dual specificity toward both ubiquitin (Ub)<br>and NEDD8, a Ub-like molecule.                               | 2530630                         |
| UCHL5                |                                        | UCHL5 is a member of the ubiquitin C-terminal hydrolase (UCH) deubiquitinase superfamily. UCHL5 is the deubiquitination enzyme component of the 19S regulatory subunit of the 26S proteasome that displays ubiquitin isopeptidase activity toward K48-linked chains.                                                                                                              | 16906146, 18922472              |
| USP1                 | FANCD2, PCNA                           | USP1 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP1 is a negative regulator of DNA repair machinery.                                                                                                                                                                                                                        | 15694335, 16531995              |
| USP2                 | CCND1                                  | USP2 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP2 is characterized by its C19 peptidase activity, which is involved in ubiquitin recycling and in the disassembly of various forms of polymeric ubiquitin and ubiquitin-like protein complexes.                                                                           | 17290220, 19917254,<br>19838211 |
| USP3                 | H2A                                    | USP3 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP3 deubiquitinates monoubiquitinated histone H2A and H2B. USP3 is required for proper progression through S phase and subsequent mitotic entry.                                                                                                                            | 17980597                        |
| USP4                 | ADORA2A, RB1                           | USP4 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP4 is a proto-oncogene that deubiquitinates target proteins such as the receptor ADORA2A and TRIM21 and plays a role in the regulation of quality control in the ER.                                                                                                       | 7784062, 16316627               |
| USP5/ISOT            | p53, TRIML1                            | USP5 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP5 preferentially cleaves branched and K48-linked<br>polymers. USP5 binds linear and K63-linked polyubiquitin with a lower affinity. Knock-down of USP5 causes the accumulation of p53/TP53 and an increase<br>in p53/TP53 transcriptional activity.                       | 19098288                        |
| USP6                 |                                        | USP6 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP6 exhibits an ATP-dependent C-terminal isopep-<br>tidase activity.                                                                                                                                                                                                        | 20418905                        |
| USP7/HAUSP           | FOXO4, PTEN p53,<br>MDM2               | USP7, also known as herpes virus-associated ubiquitin-specific protease (Hausp), is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP7 deubiquitinates target proteins such as FoxO4, p53/TP53, MDM2, PTEN and DAXX. USP7 is Involved in cell proliferation during early embryonic development.                                    | 11923872, 14506283,<br>15053880 |
| USP8/UBPY            | EPS15                                  | USP8 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP8 is an essential growth-regulated enzyme that<br>is indispensible for cell proliferation and survival. USP8 regulates endosomal ubiquitin dynamics, cargo sorting, membrane traffic at early endosomes, and<br>maintenance of EGFR stability.                            | 9628861, 16520378,<br>17711858  |
| USP9X                | SMAD4, MARK4,<br>NUAK1, BIRC5/survivin | USP9X is an X-linked member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP9X hydrolyzes both 'Lys-29'- and 'Lys-<br>33'-linked polyubiquitin chains. USP9X functions to regulate cell-cell contact interactions, TGF-β/BMP signaling, chromosome alignment and segregation,<br>and specifically deubiquitinates monoubiquitinated Smad4. | 16322459, 18254724,<br>19135894 |
| USP9Y                | SMAD4                                  | USP9Y is a Y-linked member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily required for sperm production. USP9Y func-<br>tions to regulate TGF-β/BMP signaling, and specifically deubiquitinates monoubiquitinated Smad4.                                                                                                                      | 19246359                        |
| USP10                | G3BP, p53/TP53, SNX3                   | USP10 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP10 functions as an essential regulator of p53/<br>TP53 stability following DNA damage.                                                                                                                                                                                   | 11439350, 18632802,<br>19398555 |
| USP11                | Brca2, Chuk/ikka,<br>Ranbp9/ranbpm     | USP11 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP11 aids in the regulation of pathways leading to NF-κB activation and also DNA repair after double-stranded DNA breaks.                                                                                                                                                  | 15314155, 17897950,<br>18408009 |
| USP12                | WDR48                                  | USP12 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP12 requires interaction with WDR48 for high deubiquitinase activity.                                                                                                                                                                                                     | 19075014                        |
| USP13/ISOT3          |                                        | USP13 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP13 is part of an autophagy regulatory loop<br>involving the deubiquitination of USP10 that leads to regulation of p53 stability.                                                                                                                                         | 9841226                         |
| USP14                | FANCC, CXCR4, ERN1                     | USP14 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP14 is one of three proteasome-associated deubiquitinases, along with POH and UCHL5. USP14 is thought to antagonize substrate degradation as a part of the proteasome.                                                                                                    | 18162577, 19135427,<br>19106094 |
| USP15                | E6                                     | USP15 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP15 preferentially cleaves K48-linked polymers.<br>USP15 deubiquitination protects APC and human papillomavirus type 16 protein E6 target proteins against proteasomal degradation.                                                                                       | 16005295, 19576224              |
| USP16                | H2A                                    | USP16 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP16 acts as a transcriptional co-activator by<br>specifically targeting H2A for deubiquitination. USP16 deubiquitination of H2A is also required for entry into mitosis.                                                                                                  | 10077596, 17914355              |
| USP18                |                                        | USP18 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP18 catalyzes the removal of ISG15, an<br>interferon-regulated ubiquitin-like protein, which maintains the critical cellular balance of ISG15-conjugated proteins important for normal development and<br>brain function.                                                 | 10777664                        |
| USP19                | RNF123                                 | USP19 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP19 deubiquitinates target proteins involved in cell proliferation, myogenesis, regulation of hypoxia, and modulation of the ERAD protein degradation pathway.                                                                                                            | 19465887                        |
|                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                   |                                 |

.....

Transcriptional Inhibition

![](_page_45_Picture_7.jpeg)

Joining of Subunits ----> Translocation

| Deubiquitinase Table |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
|----------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Ligase               | Substrate                   | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PMID                            |
| USP20                | VHL, DIO2, HIF1A            | USP20 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP20 cleaves K48- and K63-linked chains. USP20 deubiquitinates $\beta_2$ -adrenergic receptor (ADRB2) as well as target proteins involved in thyroid hormone regulation and regulation of hypoxia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12056827, 12865408,<br>15776016 |
| USP21                | H2A                         | USP21 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP21 is also known as USP23. USP21 acts as a transcriptional co-activator by specifically targeting H2A for deubiquitination. USP21 is capable of removing the ubiquitin-like NEDD8 from NEDD8 conjugates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10799498                        |
| USP22                | ATXN7L3                     | USP22 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP22 deubiquitinates histones H2A and H2B as<br>a component of the histone acetylation (HAT) complex SAGA. USP22 deubiquitinates specific targets required for transcription, nuclear receptor-mediated<br>transactivation, and cell cycle progression.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18206972, 18206973,<br>18469533 |
| USP23                | H2A                         | See USP21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10799498                        |
| USP24                |                             | USP24 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. Mutations of the USP24 gene may correlate with risk of Parkinson's disease.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16917932                        |
| USP25                | ACTA1, MYBPC1               | USP25 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP25 cleaves both K48- and K63-linked chains.<br>The USP25 muscle-specific isoform may have a role in the regulation of muscular differentiation and function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10612803, 11597335,<br>16501887 |
| USP26                | AR                          | USP26 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP26 regulates the androgen receptor signaling<br>pathway by targeting the androgen receptor for deubiquitination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20501646                        |
| USP27X               |                             | USP27X is an X-linked member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12838346                        |
| USP28                | P53bp1, Chk2, FBW7a,<br>Myc | USP28 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP28 can bind to and deubiquitinate several target proteins in the DNA damage pathway, resulting in their stability, including p53BP1 and Chk2. USP28 also plays an important role in Myc related signaling by binding through FBW7a to Myc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17558397, 16901780              |
| USP29                |                             | USP29 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10958632                        |
| USP30                |                             | USP30 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP30 may participate in the maintenance of<br>mitochondrial morphology.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18287522                        |
| USP31                |                             | USP31 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14715245                        |
| USP32                |                             | USP32 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP32 is highly expressed in breast cancer cell lines<br>and may be involved in tumorigenesis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12604796, 20549504              |
| USP33                | ADRB2                       | USP33 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP33 is involved in cellular migration, β2-<br>adrenergic receptor/ADRB2 recycling, and G protein-coupled receptor (GPCR) signaling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12865408                        |
| USP34                | AXIN1, AXIN2                | USP34 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP34 acts as an activator of the Wnt signaling<br>pathway downstream of the β-catenin destruction complex by deubiquitinating and stabilizing AXIN1 and AXIN2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21383061                        |
| USP35                |                             | USP35 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14715245                        |
| USP36                |                             | USP36 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP36 may play a role in the maintenance of stem cells and regulation of cellular differentiation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22622177                        |
| USP37                | FZR1/CDH1                   | USP37 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP37 antagonizes the anaphase-promoting<br>complex (APC/C) during G1/S transition by mediating deubiquitination of cyclin A (CCNA1 and CCNA2), thereby promoting S phase entry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21596315                        |
| USP38                |                             | USP38 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP38 is expressed in skeletal muscle and adrenal gland.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19615732                        |
| USP39                |                             | USP39 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP39 may play a role in mRNA splicing as a<br>competitor of ubiquitin C-terminal hydrolases (UCHs).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11350945                        |
| USP40                |                             | USP40 may be a nonprotease homologue of the ubiquitin-specific processing protease (USP/USB) superfamily.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16917932                        |
| USP41                |                             | USP41 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14715245                        |
| USP42                |                             | USP42 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP42 may play a role in spermatogenesis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14715245                        |
| USP43                | 0.1.00                      | USP43 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14715245                        |
| USP44                | Cdc20                       | USP44 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily. USP44 regulates the cell cycle by deubiquitination of CDC20, leading to stabilization of the MAD2L1-CDC20-APC/C ternary complex and avoidance of premature anaphase entry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/443180                        |
| USP45                | 0404/04007                  | USP45 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14/15245                        |
| USP46                | GAD I/GAD67                 | USP46 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase supernamily. USP46 requires interaction with WUR48 for high<br>deubiquitinase activity. USP46 may act by mediating the deubiquitination of GAD1/GAD67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19075014                        |
| 05P47                | PULB, CDC25A                | GSF47 is a memoer of the ubiquitin-specific processing processe (GSF/GSB) deutoquitinase superfamily. USF47 regulates base excision repair by deutoquitinant may be a specific processing processe (GSF/GSB) deutoquitinase superfamily. USF47 regulates base excision repair by deutoquitinant may be a specific processing processe (GSF/GSB) deutoquitinase superfamily. USF47 regulates base excision repair by deutoquitinase superfamily. USF47 regulates base excision repair bas | 19900809                        |
| 05P48                | TRAF2, RELA                 | USP48 is a memoer of the ubiquitin-specific processing processing processe (USP/USB) deubiquitinase superramily. USP48 may be involved in the regulation of NF-kB activation by the TNF receptor superfamily via its interactions with ReIA and TRAF2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16214042                        |
| USP49                |                             | USP49 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14/15245                        |
| USP50                |                             | USP50 is a nonprotease homologue of the ubiquitin-specific processing protease (USP/USB) superfamily.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14/15245                        |
| USP51                | DANO                        | USP51 is a member of the ubiquitin-specific processing protease (USP/USB) deubiquitinase superfamily.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14/15245                        |
| USP52                | PAN3                        | US+72 is a memoer or the ubiquitin-specific processing protease (US+7/USB) deubiquitinase superfamily. USP52 is a member of the Pan nuclease complex, which regulates mRNA stability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14583602, 16284618              |
| USP53                |                             | USP33 is a nonprotease nomologue of the ubiquitin-specific processing protease (USP/USB) superfamily.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14/15245                        |
| USP54                |                             | USP34 is a nonprotease nomologue of the ubiquitin-specific processing protease (USP/USB) superfamily.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14715245                        |
|                      |                             | USPLI is a nonprotease nomologue of the ubiquitin-specific processing protease (USP/USB) superfamily.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10017600 10017000               |
| USPL2/CYLD           | NF-KB, HUACO                | crt.D veuoliquiuriase regulates ininammation and cell proliferation by down regulating NF-kB signaling through removal of ubiquitin chains from several NF-kB pathway proteins. CYLD is a negative regulator of proximal events in Wnt/β-catenin signaling and is a critical regulator of natural killer T cell development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1291/689, 1291/690              |
| VCPIPT               | VGP                         | VUPPT (Valuation containing protein p97/p47 complex-interacting protein) is a member of the deubiquitinating enzyme ovarian tumor domain (010) superfam-<br>ily. VCPIP1 is necessary for VCP-mediated reassembly of Golgi stacks after mitosis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10037600                        |

XP®, XMT®, exceptional Performance<sup>™</sup>, one antibody, mulitple applications<sup>™</sup>, Cell Signaling Technology®, CST<sup>™</sup>, and PhosphoSitePlus® are trademarks of Cell Signaling Technology, Inc.

All content of this Brochure and Technical Reference is protected by U.S. and foreign intellectual property laws. You may not copy, modify, upload, download, post, transmit, republish or distribute any of the content without our prior written permission except for your own personal and non-commercial purposes. Except as provided in the preceding sentence, nothing contained in this Brochure and Technical Reference shall be construed as granting a license or other rights under any patent, trademark, copyright or other intellectual property of Cell Signaling Technology or any third party. Unauthorized use of any Cell Signaling Technology trademark, service mark or logo may be a violation of federal and state trademark laws.

Kinase Phosphatase

![](_page_46_Picture_5.jpeg)

![](_page_46_Picture_7.jpeg)

![](_page_46_Picture_8.jpeg)

![](_page_46_Picture_9.jpeg)

![](_page_46_Picture_10.jpeg)

![](_page_47_Picture_0.jpeg)

### Headquarters

| USA                      | Cell Signaling Technology, Inc.:         Tel:         978-867-2300         E-mail:         info@cellsignal.com         www.cellsignal.com           Technical Support:         877-678-8324         support@cellsignal.com         Orders:         877-616-2355         orders@cellsignal.com |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subsidiaries             |                                                                                                                                                                                                                                                                                               |
| CHINA                    | Cell Signaling Technology China: Tel: (86) 21-5835-6288   E-mail: info@cst-c.com.cn   www.cellsignal.com                                                                                                                                                                                      |
| EUROPE                   | Cell Signaling Technology Europe: Tel: +31 (0)71 568 1060   E-mail: info@cellsignal.eu   www.cellsignal.com                                                                                                                                                                                   |
| JAPAN                    | Cell Signaling Technology Japan, K.K.: Tel: 03-3295-1630   E-mail: info@cstj.co.jp   www.cstj.co.jp                                                                                                                                                                                           |
| Distributors             |                                                                                                                                                                                                                                                                                               |
| ARGENTINA                | Migliore Laclaustra S.R.L.: Tel: 5411-43729045   E-mail: info@migliorelaclaustra.com.ar                                                                                                                                                                                                       |
| AUSTRALIA                | Genesearch PTY. Ltd.: Toll Free: 1800 074 278   www.genesearch.com.au                                                                                                                                                                                                                         |
| BELGIUM/LUXEMBOURG       | Bioké: Tel: 0800-71640   www.bioke.com                                                                                                                                                                                                                                                        |
| BRAZIL                   | Uniscience Do Brazil: Tel: (011) 3622 2320   www.uniscience.com                                                                                                                                                                                                                               |
| CANADA                   | New England Biolabs Ltd: Toll Free: 1-800-387-1095   www.neb.ca                                                                                                                                                                                                                               |
| CHILE                    | Genetica Y Technologia Ltda.: Tel: 56-2-633 52 69   www.genytec.cl                                                                                                                                                                                                                            |
| COLOMBIA/PANAMA          | Bio Products, Inc. dba Subiotec Ltda.: Tel: 561-434-2121   www.bioproducts.net                                                                                                                                                                                                                |
| CZECH REPUBLIC           | Biotech A.s.: Toll Free: +420 800124683   www.biotech.cz                                                                                                                                                                                                                                      |
| DENMARK                  | BioNordika Denmark A\S Tel: +45 3956 2000   www.bionordika.dk                                                                                                                                                                                                                                 |
| ESTONIA/LATVIA/LITHUANIA | BioNordika Baltic Oü: Tel: +372 6306 520 www.bionordika.ee                                                                                                                                                                                                                                    |
| FINLAND                  | Fisher Scientific Oy: Tel: +358 9 802 76 280   www.fishersci.fi                                                                                                                                                                                                                               |
| FRANCE                   | Ozyme: Tel: (1) 34 60 24 24   www.ozyme.fr                                                                                                                                                                                                                                                    |
| GERMANY/AUSTRIA          | New England Biolabs GmbH: Tel: +49 (0) 69 305 23140 www.neb-online.de                                                                                                                                                                                                                         |
| GREECE                   | Bioline Scientific Douros Bro – E. Demagos O.e. Tel: 210-5226547   E-mail: demagos@hol.gr                                                                                                                                                                                                     |
| HONG KONG                | Gene Company Limited: Tel: (852) 2896-6283   www.genehk.com                                                                                                                                                                                                                                   |
| HUNGARY                  | Kvalitex Kft.: Tel: (36) 1340-4700   www.kvalitex.hu                                                                                                                                                                                                                                          |
| ICELAND                  | Groco ehf: Tel: +354-568-8533   www.groco.is                                                                                                                                                                                                                                                  |
| INDIA                    | Labmate (Asia) Pvt Ltd.: Tel: 44 222 000 66   www.labmateasia.com                                                                                                                                                                                                                             |
| INDONESIA                | P I Research Biolabs   Iel: 62-21-5859365 E-mail: Indonesia@researchbiolabs.com                                                                                                                                                                                                               |
|                          | Isis Ltd.: Tel: (1) 286 7/77   www.isisco.ie                                                                                                                                                                                                                                                  |
| ISRAEL                   | Eidan Electronic Instruments Co.:   181: (3) 937   132   WWW.eidan.olz                                                                                                                                                                                                                        |
| IIALY                    | Eurocione: Toll Free: 800-315911   www.eurocionegroup.it                                                                                                                                                                                                                                      |
| KUKEA<br>MALAVOLA        | Kuram Biolech Curp.: Tel: (U2) 555-U311 ( www.kurambiolech.com                                                                                                                                                                                                                                |
| MEXICO                   | nesedicii biolabis Suli bilu. Tel: 00330023300 www.lesediciibiolabis.com                                                                                                                                                                                                                      |
| ΙΝΕΛΙΟΟ                  | Rické: Tal: 21 (0)71 562 1000 I www.bicko.com                                                                                                                                                                                                                                                 |
|                          | Biolab Ltd: Tal: (00) 080-6700 www.biolabaroun.com                                                                                                                                                                                                                                            |
|                          | Biolad Ltd. 161. (05) 500-5100 Fwww.bioladgioup.com                                                                                                                                                                                                                                           |
| ΡΩΙ ΔΝΠ                  | I ah-IOT. Tel: ±48 22 2034155 www.labiot.com                                                                                                                                                                                                                                                  |
| PORTIIGAI                | Izasa l ishon* Tel: (21) 424 73 64   www.izasa.es                                                                                                                                                                                                                                             |
| SINGAPORE                | Research Biolabs Pte Ltd: Tel: +65 6777 5366 L www.researchbiolabs.com                                                                                                                                                                                                                        |
| SLOVAK REPUBLIC          | Biotech s.r.o.: Tel: (07) 54774488 F-mail: biotech@biotech.cz                                                                                                                                                                                                                                 |
| SOUTH AFRICA             | Laboratory Specialist Services cc: Tel: +27 (0)21 7887755 www.lss.co.za                                                                                                                                                                                                                       |
| SPAIN                    | Izasa, S.a.: Tel: (34) 902 20 30 70   www.izasa.es                                                                                                                                                                                                                                            |
| SWEDEN                   | BioNordika Sweden AB: Tel: 46 8 30 60 10 www.bionordika.se                                                                                                                                                                                                                                    |
| SWITZERLAND              | Bioconcept: Tel: (061) 486 80 80 www.bioconcept.ch                                                                                                                                                                                                                                            |
| TAIWAN                   | Taigen Bioscience Corp.: Tel: (02) 28802913   www.taigen.com                                                                                                                                                                                                                                  |
| THAILAND                 | Theera Trading Co. Ltd.: Tel: (02) 412-5672   www.theetrad.com                                                                                                                                                                                                                                |
| TURKEY                   | Sacem Hayat Teknolojileri: Tel: +90 312 231 52 72   www.sacem.com.tr                                                                                                                                                                                                                          |
| UNITED KINGDOM           | New England Biolabs (UK) Ltd.: Toll Free: 0800 318486 www.neb.uk.com                                                                                                                                                                                                                          |
| URUGUAY                  | Tanirel SA: Tel: 00598 24804895   E-mail: ventas@tanirel.com.uy                                                                                                                                                                                                                               |
| VENEZUELA                | Bioproducts, Inc.: DBA Corporacion Internacional De Tecnologia, S.a. (Corpointer)                                                                                                                                                                                                             |