

Antibodies and Kits for the Study of Chromatin and Epigenetic Regulation

XP[™] Monoclonal Antibodies for Chromatin and Epigenetic Regulation

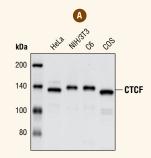
XP[™] monoclonal antibodies are a line of high quality rabbit monoclonal antibodies exclusively available from Cell Signaling Technology (CST). Any product labeled with XP has been carefully selected based on superior performance in all approved applications.

XP monoclonal antibodies are generated using XMT[™], a proprietary monoclonal technology developed at CST. The technology provides access to a broad range of antibody-producing B cells unattainable with traditional monoclonal technologies, allowing more comprehensive screening and the identification of XP monoclonal antibodies with:

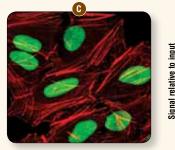
eXceptional specificity

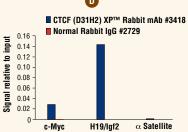
As with all CST™ antibodies, the antibody is specific to your target of interest, saving you valuable time and resources.

+ eXceptional sensitivity

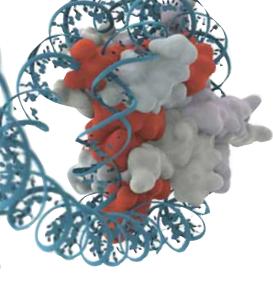

The antibody will provide a stronger signal for your target protein in cells and tissues, allowing you to monitor expression of low levels of endogenous proteins, saving you valuable materials.

+ eXceptional stability and reproducibility


XMT combined with our stringent quality control ensures maximum lot-to-lot consistency and the most reproducible results.


= eXceptional Performance™

XMT coupled with our extensive antibody validation and stringent quality control delivers XP monoclonal antibodies with eXceptional Performance in the widest range of applications. **CTCF (D31H2) XP[™] Rabbit mAb #3418** is an example of an antibody with superior performance in a wide range of tested applications.


CTCF (D31H2) XP[™] Rabbit mAb #3418: (A) WB analysis of extracts from various cell lines using #3418. (B) IHC analysis of parafin-embedded human colon carcinoma using #3418. (C) Confocal IF analysis of HCT-116 cells using #3418 (green). Actin filaments were labeled with DV-554 phalloidin (red). (D) ChIP assays were performed with cross-linked chromatin from 4 x 10⁶ HeL a cells, with either 10 µl of #3418 or 2 µl of Normal Rabbit IgG #2729, using SimpleChIP[®] Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. The enriched DNA was quantified by real-time PCR using human c-Myc promoter primers, SimpleChIP[®] Human H19/Ig2 ICR Primers #5172, and SimpleChIP[®] Human a Satellite Repeat Primers #4486. The amount of imput oncorrecipitated DNA in each sample is represented as signal relative to the total amount of input chromatin (equivalent to one).

Visit our website for more experimental details, additional information, and a complete list of available XP Monoclonal Antibodies.

Antibodies and Kits for the Study of Chromatin and Epigenetic Regulation

Cell Signaling Technology provides the highest quality activation-state and total protein antibodies for the study of chromatin and epigenetic regulation. CST[™] antibodies have been extensively validated by our in-house scientists in applications including chromatin immunoprecipitation (ChIP), immunofluorescence, immunohistochemistry, and flow cytometry. Moreover, technical support is provided by the same scientists who develop and produce the antibodies and know them best. CST phosphorylation-specific antibodies are the most highly cited and serve as core reagents in multiple drug discovery platforms. Comprehensive and up-to-date information can be found at **www.cellsignal.com.**

The nucleosome, comprised of a histone octamer around which ~147 base-pairs of DNA are wrapped, is the basic unit of chromatin in the mammalian nucleus. Histone H3 is shown in red.

Table of Contents

SimpleChIP®
Kits and Primers

6 Histones and Histone Modifications: Acetylation and Methylation

 Histones and Histone Modifications:
 Phosphorylation, Ubiquitylation, Unmodified Histones, and Histone Variants

() Antibody Sampler Kits

PathScan[®] Sandwich ELISA Kits and Pairs

2 Epigenetic Regulators: Acetylases and Deacetylases

3 Epigenetic Regulators: Methyltransferases and Demethylases

HP1 and Other Chromatin Proteins

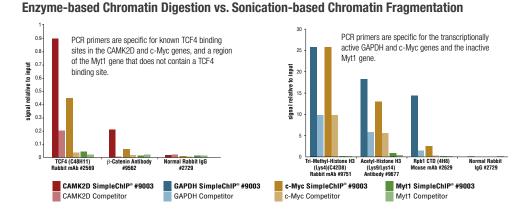
5 Signaling Pathways: -Protein Acetylation -Histone Methylation -Examples of Crosstalk Between PTMs

18 Signaling Pathways: Histone Modification Table

Environmental commitment: eco.cellsignal.com

SimpleChIP® Enzymatic Chromatin IP Kits

SimpleChIP® Enzymatic Chromatin IP Kits from Cell Signaling Technology (CST) are co-developed by CST and New England Biolabs and contain the highest quality research reagents. These kits are available with either Protein G agarose or Protein G magnetic beads and contain all buffers and reagents needed to perform up to 30 ChIP assays. The same reagents in these kits have been used for in-house ChIP validation at CST, which will simplify your optimization. The kits can be used with any ChIP-validated antibody to detect endogenous levels of protein-DNA interactions and histone modifications in mammalian cells. Protein G agarose and Protein G magnetic beads are also available as separate products.


Please visit www.cellsignal.com/technologies/chip.html for information on ChIP and CST™ SimpleChIP products.

The SimpleChIP[®] Kit Advantage

Enzyme-based Chromatin Digestion vs. Sonication-based Chromatin Fragmentation: Prior to performing chromatin IP, it is important to process chromatin to the appropriate DNA fragment size. CST SimpleChIP Enzymatic Chromatin IP Kits use micrococcal nuclease digestion to obtain chromatin fragments, whereas many competitor kits use a sonication-based method.

hase

	SimpleChIP® from Cell Signaling Technology	Competitor Kits	pairs		
Fragmentation Method		Sonication	1500	-	
Chromatin Quality		Low (rigorous sample treatment disrupts chromatin integrity and antibody epitopes)	1000 700 500		I
IP Efficiency	High	Low	400	=	
	Higher sensitivity (especially	Lower sensitivity (significantly	300	- 5	11
Detection	crucial for transcription factors and cofactors)	decreased signal for less abundant chromatin binding proteins)	200	-	11
	and coldclois		100	66 M	11

Reactivity

was purified from each chromatin sample and DNA fragment size was determined by electrophoresis on a 1% agarose gel. Both enzymatic digestion with the SimpleChIP® Kit (lane 1) and sonication with the competitor's kit (lane 2) produced chromatin fragments ranging from 150 to 700 bp, corresponding to one to five nucleosomes in length.

Enzyme-based and sonication-based ChIP kits produce chromatin fragments of a similar size, but differing chromatin integrity. Chromatin was prepared from 4 x 10⁷ HCT 116 human colorectal carcinoma cells according to the protocols included with the SimpleChIP³⁰ Enzymatic Chromatin IP Kit (Magnetic Beads) #9003 and from a competitor's sonication-based ChIP kit. DNA

SimpleChIP® digested chromatin is more conducive to immunoprecipitation than sonicated chromatin. ChIP assays were performed with 10 µg of cross-linked HCT 116 chromatin and the indicated antibodies, using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003 and a competitor's sonication-based ChIP Kit. The enriched DNA was quantified by qPCR. The amount of immunoprecipitated DNA in each sample is presented as a percent of the total input chromatin. For every target tested, enzyme-digested chromatin showed better enrichment of target DNA loci than did sonicated chromatin.

SimpleChIP® Related Products

-		modeling
	SimpleChIP® Enzymatic Chromatin IP Kit (Agarose Beads)	H, M, R, Mk
#9003	SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads)	, , ,
#7017	6-Tube Magnetic Separation Rack	
	ChIP-Grade Protein G Agarose Beads	
#9006	ChIP-Grade Protein G Magnetic Beads	
	Normal Rabbit IgG	-
	Mouse (G3A1) mAb lgG1 Isotype Control	

SimpleChIP[®] Control PCR Primers

1 2

SimpleChIP Control PCR Primers featured throughout this brochure are a mix of forward and reverse primers that can be used to amplify DNA isolated using ChIP. These primers amplify positive control DNA sequences that contain known binding sites of the target protein detected by the antibody employed in the ChIP assay, and can also be used as a negative control to demonstrate antibody sensitivity.

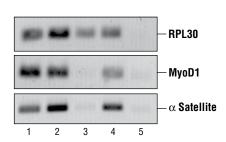
- Primers are designed, tested, and optimized in-house in conjunction with our ChIPvalidated antibodies and SimpleChIP Kits, saving time and reagents.
- :: Primers are optimized for use in real-time PCR with SYBR® Green dye, which simplifies quantification of DNA enrichment.
- **::** Technical Support is provided by the scientists who designed and use these products, and know them best, assuring a fast and accurate response.

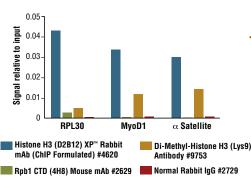
SimpleChIP[®] Enzymatic Chromatin IP Kits

SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003: 30 assays

#9002 SimpleChIP® Enzymatic Chromatin IP Kit (Agarose Beads)

	inatin in the (right boo bound)
Glycine Solution (10X) Buffer A (4X)	ChIP-Grade Protein G Agarose Beads (blocked with BSA and sonicated salmon sperm DNA) #9007
Buffer B (4X) ChIP Buffer (10X)	DNA Purification Columns
ChIP Elution Buffer (2X)	Protease Inhibitor Cocktail (200X)
5 M NaCl	Proteinase K
0.5 M EDTA	SimpleChIP [®] Human RPL30 Exon 3 Primers #7014
DNA Binding Buffer DNA Wash Buffer	SimpleChIP [®] Mouse RPL30 Intron 2 Primers #7015
DNA Wash Buller	Histone H3 (D2B12) XP [™] Rabbit mAb (ChIP Formulated)#4620
RNAse A (10 mg/ml)	Normal Rabbit IoG #2729
Micrococcal Nuclease	1M DTT
	-


#9003 SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads)


This kit contains the same components as #9002 except #9003 contains ChIP-Grade Protein G Magnetic Beads #9006 (blocked with BSA).

Selected Application References:

SimpleChIP® Enzymatic Chromatin IP Kit (Agarose Beads) #9002: Czymai, T. et al. (2010) J. Biol. Chem. 285, 10163-10178. (ChIP) Ghosh, R. et al. (2010) PLoS One 5, e9575. (ChIP)

SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003: Bommer, G.T. et al. (2010) J. Biol. Chem. 285, 1928-1938. (ChIP) De Bruyne, E. et al. (2010) Blood 115, 2430-2440. (ChIP) Onishi, Y. (2010) Biosci. Rep. 31, 57-62. (ChIP)

ChIP assavs were performed using digested chromatin from HeLa cells and either Histone H3 (D2B12) XP™ Rabbit mAb (ChIP Formulated) #4620 (lane 2), Rpb1 CTD (4H8) Mouse mAb #2629 (lane 3), Di-Methyl Histone H3 (Lys9) Antibody #9753 (lane 4), or Normal Rabbit IgG #2729 (lane 5). Purified DNA was analyzed by standard PCR methods using SimpleChIP® Human RPL30 Exon 3 Primers #7014, SimpleChIP® Human MvoD1 Exon 1 Primers #4490, and SimpleChIP® Human a Satellite Repeat Primers #4486. PCR products were observed for each primer set in the input sample (lane 1) and various ChIP samples, but not in the Normal Rabbit InG ChIP sample (lane 5)

ChIP assays were performed using digested chromatin from HeLa cells and the indicated ChIP-validated antibodies. Purified DNA was analyzed by quantitative real-time PCR using SimpleChIP® Human RPL30 Exon 3 Primers #7014 (control primer set), SimpleChIP Human MyoD1 Exon 1 Primers #4490, and SimpleChIP® Human a Satellite Repeat Primers #4486. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input chromatin (equivalent to one).

SimpleChIP[®] Assay Kits

#8980 SimpleChIP® Stem Cell Master Regulator Assav Kit

Nanog (D73G4) XP[™] Rabbit mAb (ChIP Formulated) #5232 Oct-4A (C30A3C1) Rabbit mAb (ChIP Formulated) #5677

Sox2 (D6D9) XP[™] Rabbit mAb (ChIP Formulated) #5024 SimpleChIP® Human Oct-4 Promoter Primers #4641

SimpleChIP[®] Human α Satellite Repeat Primers #4486

Tri-Methyl-Histone H3 (Lys4) (C42D8) Rabbit mAb #9751

Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb #9733 SimpleChIP® Human GAPDH Exon 1 Primers #5516

#8982 SimpleChIP® Human Bivalent Promoter Assay Kit

SimpleChIP® Human MYT-1 Exon 1 Primers #4493

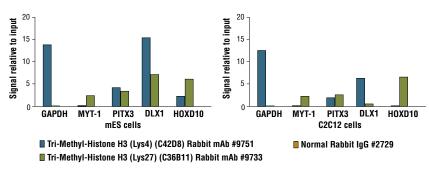
#8981 SimpleChIP® Mouse Bivalent Promoter Assay Kit

SimpleChIP® Human GATA6 Promoter Primers #5550

SimpleChIP® Mouse GAPDH Intron 2 Primers #8986

SimpleChIP® Mouse MYT-1 Promoter Primers #8985

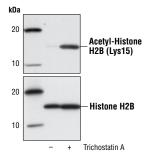
SimpleChIP® Mouse PITX3 Intron 1 Primers #8984

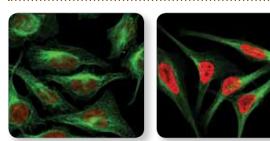

Tri-Methyl-Histone H3 (Lys4) (C42D8) Rabbit mAb #9751

Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb #9733

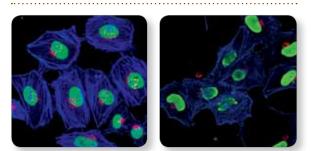
New SimpleChIP Assay Kits combine several ChIP-validated antibodies with control PCR primer mixes that serve as markers for pluripotency or epigenetic status. Rigorous in-house quality control and testing ensure the antibodies included in the kits meet the highest standards for quality, validation, and lot-to-lot consistency. The kits provide all

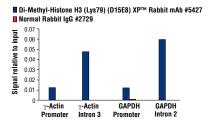
10 assays


reagents necessary to perform 10 ChIP assays and subsequent real-time PCR reactions. Pre-selected positive and negative primer sets are included in each kit, providing proven and appropriate controls for customer experiments.

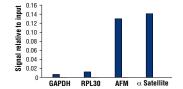

SimpleChIP® Mouse Bivalent Promoter Assay Kit #8981: ChIP assays were performed with cross-linked chromatin from 4 x 106 mouse embryonic stem (mES) cells (left panel) or C2C12 cells (right panel) and Tri-Methyl-Histone H3 (Lys4) (C42D8) Rabbit mAb #9751, Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb #9733, or 2 µl of Normal Rabbit IgG #2729, using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003 The enriched DNA was quantified by real-time PCB using SimpleChIP® Mouse GAPDH Intron 2 Primers #8986, SimpleChIP® Mouse MYT-1 Promoter Primers #8985, SimpleChIP® Mouse PITX3 Intron 1 Primers #8984, mouse DLX1 promoter primers, and mouse HOXD10 intron 1 primers. The amount of immunoprecipitated DNA in each sample is normalized for enrichment of total histone H3 and represented as signal relative to the total amount of input chromatin (equivalent to one). Note that the PITX3, DLX1, and HOXD10 promoters are all bivalent in stem cells, while only PITX3 remains bivalent in the differentiated cell line C2C12.

UNPARALLELED PRODUCT QUALITY, VALIDATION, AND TECHNICAL SUPPORT


Histones and Histone Modifications


Acetyl-Histone H2B (Lys15) Antibody #5435: WB analysis of extracts from HeLa cells, untreated or treated with Trichostatin A (TSA) #9950 (1 µM for 18 h), using #5435 (upper) and Histone H2B (53H3) Mouse mAb #2934 (lower).

Acetyl-Histone H3 (Lys9) (C5B11) Rabbit mAb (Alexa Fluor® 555 Conjugate) #5489: Confocal IF analysis of HeLa cells, untreated (left) or treated with Trichostatin A (TSA) #9950 (right), using #5489 (red) and a-Tubulin (DM1A) Mouse mAb #3873 (green).


Acetyl-Histone H4 (Lys5) Antibody #9672: Confocal IF analysis of HeLa cells, untreated (left) or treated with Trichostatin A (TSA) #9950 (right), using #9672 (green) and Golgin-97 Antibody (red). Actin filaments were labeled with a dye-conjugated phalloidin (blue pseudocolor).

Di-Methyl-Histone H3 (Lys79) (D15E8) XP™ Rabbit mAb #5427: ChIP assays were performed with cross-linked chromatin from 4 x 106 HeLa cells and either 10 µl of #5427 or 2 µl of Normal Rabbit IgG #2729 using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. The enriched DNA was quantified by real-time PCR using SimpleChIP[®] Human y-Actin Promoter Primers #5037, SimpleChIP® Human y-Actin Intron 3 Primers #5047, SimpleChIP® Human GAPDH Promoter Primers #4471, and SimpleChIP® Human GAPDH Intron 2 Primers #4478. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input chromatin (equivalent to one).

	:er	ylat	ion	Application	Reactivity
	NEW	#9814	Acetylated-Lysine (Ac-K2-100) Rabbit mAb	W, IP, ChIP, E-P	All
		#9681	Acetylated-Lysine Mouse mAb (Ac-K-103)	W, E-P	All
		#9441	Acetylated-Lysine Antibody	W, IP, IHC-P, IF-IC, ChIP, E-P	All
H2A		#2576	Acetyl-Histone H2A (Lys5) Antibody	W, IP, IHC-P	H, M, R, Mk
H2B		#2574	Acetyl-Histone H2B (Lys5) Antibody	W, IP, IHC-P	H, M, R, Mk
	NEW	#5410	Acetyl-Histone H2B (Lys12) Antibody	W, IP, IF-IC	H, M, R, Mk
	NEW	#5435	Acetyl-Histone H2B (Lys15) Antibody featured	W, IF-IC	H, M, R, Mk, (B, Pg)
		#2571	Acetyl-Histone H2B (Lys20) Antibody	W, IP, IHC-P, IF-IC, IC	H, M, R
H3		#9649	Acetyl-Histone H3 (Lys9) (C5B11) Rabbit mAb	W, IHC-P, IF-IC, F, ChIP	H, M, R, Mk, Z
	NEW	#9683	Acetyl-Histone H3 (Lys9) (C5B11) Rabbit mAb (Alexa Fluor® 488 Conjugate)	IF-IC, F	H, M, Z, (R, Mk)
	NEW	#5489	Acetyl-Histone H3 (Lys9) (C5B11) Rabbit mAb (Alexa Fluor® 555 Conjugate) <i>featured</i>	IF-IC	H, M, Z, (R, Mk)
	NEW	#4484	Acetyl-Histone H3 (Lys9) (C5B11) Rabbit mAb (Alexa Fluor® 647 Conjugate)	IF-IC, F	H, M, Z, (R, Mk)
		#9711	Acetyl- and Phospho-Histone H3 (Lys9/Ser10) Antibody	W, IHC-P, IF-P	H, M, R
		#9671	Acetyl-Histone H3 (Lys9) Antibody	W, IP, IHC-P, ChIP	H, M, R, Mk, Dm, So
		#9677	Acetyl-Histone H3 (Lys9/Lys14) Antibody	W, IP, ChIP	H, M, R, Mk, (Z)
	NEW	#4318	Acetyl-Histone H3 (Lys14) Antibody	W, IF-IC	H, M, R, Mk, (Dm)
	NEW	#5275	Acetyl-Histone H3 (Lys14) Antibody (ChIP Formulated) <i>featured</i>	ChIP	H, (M, R, Mk)
		#9675	Acetyl-Histone H3 (Lys18) Antibody	W, IHC-P, ChIP	H, M, R
		#9674	Acetyl-Histone H3 (Lys23) Antibody	W, IHC-P	H, M, R
	NEW	#4353	Acetyl-Histone H3 (Lys27) Antibody	W, IP, ChIP	H, M, R, Mk, (Hm, C Dm, X, Z, B)
	NEW	#4243	Acetyl-Histone H3 (Lys56) Antibody	W, IP, IF-IC	H, M, R, Mk
H4	NEW	#9672	Acetyl-Histone H4 (Lys5) Antibody <i>featured</i>	W, IP, IHC-P, IF-IC, ChIP	H, M, R, Mk, (C, Dr X, Z, B, Pg)
		#2594	Acetyl-Histone H4 (Lys8) Antibody	W, IF-IC, F, ChIP	H, M, R, Mk
			Acetyl-Histone H4 (Lys12) Antibody	W, IHC-P, IF-IC, F	

■ Pan-Methyl-Histone H3 (Lys9) (D54) XP[™] Rabbit mAb #4473 Normal Rabbit loG #2729

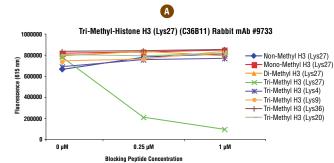
Pan-Methyl-Histone H3 (Lys9) (D54) XP™ Rabbit mAb #4473: ChIP

assays were performed with cross-linked chromatin from 4 x 10⁶ Hel a cells and either 20 µl of #4473 or 2 µl of Normal Rabbit IgG #2729, using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. The enriched DNA was quantified by real-time PCR using SimpleChIP® Human GAPDH Exon 1 Primers #5516, SimpleChIP® Human RPL30 Exon 3 Primers #7014, SimpleChIP® Human AFM Intron 1 Primers #5098, and SimpleChIP® Human a Satellite Repeat Primers #4486. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input chromatin (equivalent to one).

Selected Application References:

Acetylated-Lysine Mouse mAb (Ac-K-103) #9681:

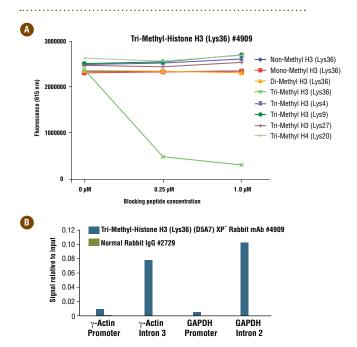
VanDemark, A.P. et al. (2007) Mol. Cell 27, 817-828. (W) Zhao, L.J. et al. (2006) J. Biol. Chem. 281, 36613-36623. (W)

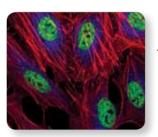

Acetylated-Lysine Antibody #9441:

Werner, H.B. et al. (2007) J. Neurosci. 27, 7717-7730. (W)

Acetyl-Histone H3 (Lys9) (C5B11) Rabbit mAb #9649:

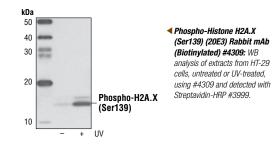
Kong, D.K. et al. (2010) Mol. Biol. Cell 21, 1335-1349. (ChIP)

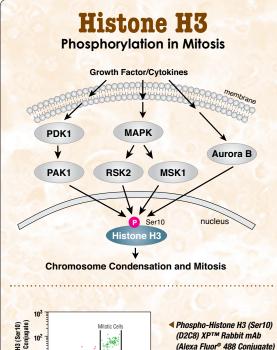

APPLICATIONS KEY:

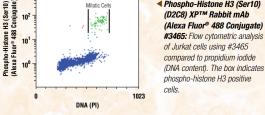


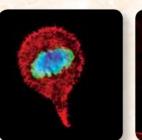
Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb #9733: (A) Specificity of the antibody was determined by peptide ELISA. The graph depicts the binding of the antibody to pre-coated tri-methyl histone H3 (Lys27) peptide in the presence of increasing concentrations of various competitor peptides. As shown, only the tri-methyl histone H3 (Lys27) peptide (green) competed away binding of the antibody. (B) Confocal IF analysis of HeLa cells using #9733 (green). Actin filaments were labeled with DY-554 phalloidin (red).

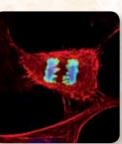
Methylation Application Reactivity #9707 Methyl-Histone H3 (Arg2) Antibody W Н NEW #5326 Mono-Methyl-Histone H3 (Lys4) (D1A9) W. IF-IC. ChIP H, M, R, Mk XP™ Rabbit mAb *featured* #9723 Mono-Methyl-Histone H3 (Lys4) Antibody W, IP, IF-IC H, M, R, Mk, (X, Z) #9725 Di-Methyl-Histone H3 (Lys4) (C64G9) W, IP, IHC-P, IF-IC, H, M, R, Mk Rabbit mAb ChIP #9726 Di-Methyl-Histone H3 (Lys4) Antibody W. IP. IHC-P. IF-IC. H. M. R. Mk. (X. Z) ChIP W, IHC-P, IF-IC, ChIP H, M, R, Mk, Dm, Sc, #9751 Tri-Methyl-Histone H3 (Lys4) (C42D8) Rabbit mAb (X, Z) #9727 Tri-Methyl-Histone H3 (Lys4) Antibody W, IP, IHC-P, IF-IC, H, M, R, Mk, (X, Z) ChIP NEW #4658 Di-Methyl-Histone H3 (Lys9) (D85B4) XP™ W, IP, IF-IC, ChIP H, M, R, Mk, (Dm, X, Rabbit mAb Z, B, Pg, Sc) #9753 Di-Methyl-Histone H3 (Lys9) Antibody W, IP, IHC-P, IF-IC, H, M, R, Mk, Dm, Sc ChIP NEW #5327 Di/Tri-Methyl-Histone H3 (Lys9) (6F12) W, IP, IF-IC, ChIP H, M, R, Mk Mouse mAb #9754 Tri-Methyl-Histone H3 (Lys9) Antibody W, IF-IC, ChIP H, M, R, Mk, (Dm, Pg) NEW #4473 Pan-Methyl-Histone H3 (Lys9) (D54) XP™ W, IP, IF-IC, ChIP H. M. R. Mk. (C. Dm. Rabbit mAb featured X, Z, B, Pg, Sc) #4069 Pan-Methyl-Histone H3 (Lys9) Antibody W, IP, IF-IC, ChIP H, M, R, Mk, Z #9728 Di-Methyl-Histone H3 (Lys27) (D18C8) W. IF-IC. ChIP H, M, R, Mk XP™ Rabbit mAb #9755 Di-Methyl-Histone H3 (Lys27) Antibody W, IP, IF-IC H, M, R, Mk #9733 Tri-Methyl-Histone H3 (Lys27) (C36B11) W, IP, IHC-P, IF-IC, H, M, R, Mk, (X, Z) Rabbit mAb featured ChIP #9756 Tri-Methyl-Histone H3 (Lys27) Antibody W, IP, IHC-P, IF-IC, H, M, R, Mk, (X) ChIP #2901 Di-Methyl-Histone H3 (Lys36) (C75H12) W, IHC-P, IF-IC H, M, R, Mk Rabbit mAb #9758 Di-Methyl-Histone H3 (Lys36) Antibody W IP IF-IC H. M. R. Mk NEW #4909 Tri-Methyl-Histone H3 (Lys36) (D5A7) W, ChIP H, M, R, Mk, (Hm, C, XP™ Rabbit mAb featured Dm, X, Z, B) #9763 Tri-Methyl-Histone H3 (Lys36) Antibody W, IHC-P, IF-IC H, M, R, Mk Di-Methyl-Histone H3 (Lys79) (D15E8) NEW #5427 W. ChIP H, M, R, Mk XP™ Rabbit mAb featured #9757 Di-Methyl-Histone H3 (Lys79) Antibody W IP H, M, R, Mk H4 #9724 Mono-Methyl-Histone H4 (Lys20) Antibody W H, M, R, Mk, (Dm, X, Z, B, Pg) #9759 Di-Methyl-Histone H4 (Lys20) Antibody W H, M, R, Mk, (Dm, Z, B, Pg,) NEW #5737 Tri-Methyl-Histone H4 (Lys20) Rabbit mAb W, IP, ChIP H, M, R, Mk



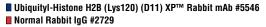

Tri-Methyl-Histone H3 (Lys36) (D5A7) XP™ Rabbit mAb #4909: Specificity of the antibody was determined by peptide ELISA. The graph (A) depicts the binding of the antibody to pre-coated tri-methyl histone H3 (Lys36) peptide in the presence of increasing concentrations of various competitor peptides. As shown, only the tri-methyl histone H3 (Lys36) peptide (green) competed away binding of the antibody. (B) ChIP assays were performed with cross-linked chromatin from 4 x 106 HeLa cells and either 10 µl of . #4909 or 2 ul of Normal Rabbit laG #2729 using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. The enriched DNA was quantified by real-time PCR using SimpleChIP® Human y-Actin Promoter Primers #5037, SimpleChIP® Human y-Actin Intron 3 Primers #5047, SimpleChIP® Human GAPDH Promoter Primers #4471, and SimpleChIP® Human GAPDH Intron 2 Primers #4478. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input chromatin (equivalent to one).

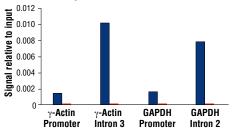



Mono-Methyl-Histone H3 (Lys4) (D1A9) XPT Rabbit mAb #5326: Confocal IF analysis of HeLa cells using #5326 (green) and MEK1/2 (L38C12) Mouse mAb #4694 (blue). Actin filaments were labeled with DY-554 phalloidin (red).


REACTIVITY KEY:

Phospho-Histone H3 (Ser10) (D2C8) XP™ Rabbit mAb #3377: Confocal IF analysis of HeLa cells using #3377 (green). Actin filaments were labeled with DY-554 phalloidin (red). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye).

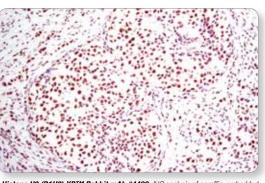

rnos	phory	ation	Application	Reactivity
H2A.X	#9718	Phospho-Histone H2A.X (Ser139) (20E3) Rabbit mAb	W, IHC-P, IF-IC, F	H, M, R, Mk
	#9719	Phospho-Histone H2A.X (Ser139) (20E3) Rabbit mAb (Alexa Fluor® 488 Conjugate)	IF-IC, F	H, M
	#9720	Phospho-Histone H2A.X (Ser139) (20E3) Rabbit mAb (Alexa Fluor® 647 Conjugate)	IF-IC, F	H, M
	NEW #4309	Phospho-Histone H2A.X (Ser139) (20E3) Rabbit mAb (Biotinylated) <i>featured</i>	W	H, M, R, Mk
	#2577	Phospho-Histone H2A.X (Ser139) Antibody	W, IHC-P, IF-IC, F	H, M, R
	NEW #5438	Phospho-Histone H2A.X (Ser139/Tyr142) Antibody	W, IP, IF, F	H, M, R, Mk
H3	#9714	Phospho-Histone H3 (Thr3) Antibody	W, IHC-P	H, M, R
	#3377	Phospho-Histone H3 (Ser10) (D2C8) XP™ Rabbit mAb <i>featured</i>	W, IF-IC, F	H, M, R, Mk, Z
	#3465	Phospho-Histone H3 (Ser10) (D2C8) XP™ Rabbit mAb (Alexa Fluor® 488 Conjugate) <i>feature</i>	IF-IC, F d	H, M, R, Mk
	#3475	Phospho-Histone H3 (Ser10) (D2C8) XP™ Rabbit mAb (Alexa Fluor® 555 Conjugate)	IF-IC	H, M, R, Mk
	#3458	Phospho-Histone H3 (Ser10) (D2C8) XP™ Rabbit mAb (Alexa Fluor® 647 Conjugate)	IF-IC, F	H, M, R, Mk
	#3642	Phospho-Histone H3 (Ser10) (D2C8) XP™ Rabbit mAb (Biotinylated)	W, IF-F, IF-IC, F	H, M, R, Mk
	#9706	Phospho-Histone H3 (Ser10) (6G3) Mouse mAb	W, IF-F, IF-IC, F	H, M, R
	#9701	Phospho-Histone H3 (Ser10) Antibody	W, IP, IHC-P, IHC-F, IF-IC, F	H, M, R, Mk, C, Dm, Z, Sc, (X)
	#9708	Phospho-Histone H3 (Ser10) Antibody (Alexa Fluor® 488 Conjugate)	IF-IC, F	H, M, (X)
	#9716	Phospho-Histone H3 (Ser10) Antibody (Alexa Fluor® 647 Conjugate)	IF-IC, F	H, M, R, Mk
	#9767	Phospho-Histone H3 (Thr11) (C2A6) Rabbit mAb	W, IP, F	H, M, R, (X)
	#9764	Phospho-Histone H3 (Thr11) Antibody	W, IP, IF-IC, F	H, M, R, (X)
	#9713	Phospho-Histone H3 (Ser28) Antibody	W, IP, IF-F, IF-IC, F	H, M, Hm, Dm, (R, C, X, Z, B)
CENP-A	#2187	Phospho-CENP-A (Ser7) Antibody featured	W, IP, IF-IC	H, (Mk)


Ubiquitylation

H2B NEW #5546 Ubiquityl-Histone H2B (Lys120) (D11) XP™

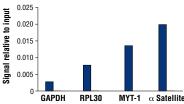
Rabbit mAb featured

W, ChIP H, M, R, Mk

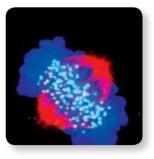


UbiquityI-Histone H2B (Lys120) (D11) XP™ Rabbit mAb #5546: ChIP assays were performed with cross-linked chromatin from 4 x 10⁶ HeLa cells and either 10 µl of #5546 or 2 µl of Normal Rabbit IgG #2729 using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. The enriched DNA was quantified by real-time PCR using SimpleChIP® Human y-Actin Promoter Primers #5037, SimpleChIP® Human y-Actin Intron 3 Primers #5047, SimpleChIP® Human GAPDH Promoter Primers #4471, and SimpleChIP® Human GAPDH Intron 2 Primers #4478. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input chromatin (equivalent to one).

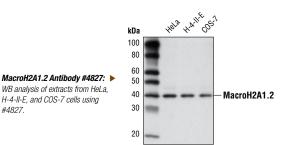
APPLICATIONS KEY:

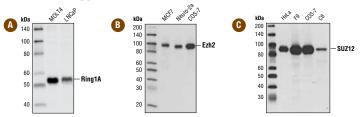

Unm	odified	d Histones and Variants	Application	Reactivity
H2A	#3636	Histone H2A (L88A6) Mouse mAb	W, IHC-P	H, M, R, Mk, (C, Dm, Z, Pg)
	#2578	Histone H2A Antibody II	W, IP, IHC-P	H, M, R, Mk, (X)
	#2595	Histone H2A.X Antibody	W	H, Mk
	#2718	Histone H2A.Z Antibody	W, IP, IF-IC	H, M, R, Mk, Z, (C, X, B)
MACRO- H2A	NEW #4160	MacroH2A1.1 Antibody	W	H, M, R
	NEW #4827	MacroH2A1.2 Antibody <i>featured</i>	W, IF-IC	H, M, R, Mk, (C, B)
H2B	#2722	Histone H2B Antibody	W, IP	H, M, R, Mk
	#2934	Histone H2B (53H3) Mouse mAb	W	H, M, R, Mk, Z, (X, B)
H3	NEW #4499	Histone H3 (D1H2) XP™ Rabbit mAb <i>featured</i>	W, IHC-P, IF-IC	H, M, R, Mk, (Hm, C, Dm, X, Z, B)
	NEW #4620	Histone H3 (D2B12) XP™ Rabbit mAb (ChIP Formulated) <i>featured</i>	ChIP	H, M, (R, Hm, Mk, C, Dm, X, Z, B)
	#9717	Histone H3 (3H1) Rabbit mAb	W	H, M, R, Hm, Mk, Z, B, Pg
	NEW #5192	Histone H3 (3H1) Rabbit mAb (HRP Conjugate)	W	H, M, R, Hm, Mk, Z, B, Pg
	#3638	Histone H3 (96C10) Mouse mAb	W	H, M, R, Mk, (Dm, X)
	#3680	Histone H3 (96C10) Mouse mAb (IHC Formulated)	IHC-P	H, (M, R, Mk, Dm, X)
	#9715	Histone H3 Antibody	W, IHC-P, IF-IC	H, M, R, Mk, Z, B, Pg, (Dm)
	#2650	Histone H3 Antibody (ChIP Formulated)	ChIP	H, M, (R, Mk, C, Dm, X, Z, B)
H4	#2935	Histone H4 (L64C1) Mouse mAb	W, IHC-P	H, M, R, Mk, Z, (Dm, X, Z, B)
	#2960	Histone H4 (L64C1) Mouse mAb (ChIP Formulated)	ChIP	H, (M, R, Mk, Dm, X, Z, B)
	#2592	Histone H4 Antibody	W, IP, IHC-P	H, M, R, Mk, Dm, Z, Sc
CENP-A	#2048	CENP-A (C51A7) Rabbit mAb (Mouse Specific; IF Preferred)	W, IF-IC	Μ
	#2047	CENP-A (C5H3) Rabbit mAb (Mouse Specific)	W, IP	М
	#2186	CENP-A Antibody	W, IF-IC	Н

Cell Signaling Technology offers the highest quality research products, rigorous validation, and technical support provided by the same scientists who produce and validate the products and know them best.



Histone H3 (D1H2) XPTM Rabbit mAb #4499: IHC analysis of paraffin-embedded human breast carcinoma using #4499.


■ Histone H3 (D2B12) XP™ Rabbit mAb (ChIP Formulated) #4620 ■ Normal Rabbit IgG #2729


Histone H3 (D2B12) XP™ Rabbit mAb (ChIP Formulated) #4620: ChIP assays were performed with cross-linked chromatin from 4 x 10⁶ HeLa cells and either 10 µl of #4620 or 2 µl of Normal Rabbit IgG #2729 using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. The enriched DNA was quantified by real-time PCR using SimpleChIP® Human GAPDH Exon 1 Primers #5516, SimpleChIP® Human RPL30 Exon 3 Primers #7014, SimpleChIP® Human MYT-1 Exon 1 Primers #4493, and SimpleChIP® Human & Satellite Repeat Primers #4486. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input chromatin (equivalent to one).

Phospho-CENP-A (Ser7) Antibody #2187: Confocal IF analysis of a mitotic HeLa cell using #2187 (green) and β-Tubulin (9F3) Rabbit mAb (Alexa Fluor® 555 Conjugate) #2116 (red). Phospho-CENP-A signal is localized to bright spots in the metaphase plate. Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye).

Sampler Kits

- #9928 Histone Deacetylase (HDAC) Antibody Sampler Kit
- #9933 Acetyl-Histone Antibody Sampler Kit
- #9927 Acetyl-Histone H3 Antibody Sampler Kit
- #9847 Methyl-Histone H3 Antibody Sampler Kit
- #9849 Phospho-Histone H3 (Mitotic Marker) Antibody Sampler Kit
- NEW #9788 Polycomb Group Antibody Sampler Kit featured

Polycomb Group Antibody Sampler Kit #9788: WB analysis of extracts from various cell lines using (A) Ring1A Antibody #2820, (B) Ezh2 (D2C9) XP™ Rabbit mAb #5246, and (C) SUZ12 (D39F6) XP™ Rabbit mAb #3737.

What does Antibody Validation Mean at Cell Signaling Technology?

Scientists at Cell Signaling Technology (CST) follow a stringent validation protocol using a combination of several approaches and applications to provide you with the highest quality antibodies. This ensures credible and reproducible results with the least expenditure of your costly time, samples, and reagents.

Antibody Validation at Cell Signaling Technology includes:

Testing in a Number of Applications to help you choose the antibody that works best in your experiment.

:: Western blot, Immunoprecipitation, Immunohistochemistry, Immunofluorescence, Flow cytometry, ChIP, Sandwich ELISA

Verifying Specificity and Reproducibility to ensure that the antibody performs consistently in all applications specified.

- :: Treatment of cells with appropriate kinase-specific inhibitors to verify specificity
- Analysis of a large panel of cell lines with known target expression levels to confirm target specificity
- Phosphatase treatment to verify phospho-specificity
- :: Comparison of antibody to isotype control antibody
- Verification of target-specific signal in transfected cells, knock-out cells, or siRNA-treated cells
- **...** Blocking with antigen peptide
- :: Verification of correct subcellular localization or treatment-induced translocation
- :: Side-by-side comparison of a new lot with previous lots to ensure lotto-lot consistency

Identifying Optimal Conditions to save your precious time, samples, and reagents.

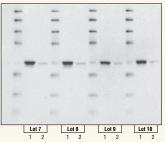
- :: Optimal dilutions and buffers predetermined
- : Positive and negative control cell extracts specified
- :: Detailed protocols already optimized

Comparison of target-specific antibody to non-specific isotype control

Phospho-Stat5 (Tyr694) (C71E5) Rabbit

mAb #9314: Flow cytometric analysis of K-562 cells, untreated (green) or gefitinib-treated (blue), using #9314 compared to concentration matched Rabbit (DA1E) mAb IgG XP[™] Isotype Control #3900 (red).

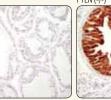
Phospho-Stat5 (Tyr694)


Side by side comparison of new lot with previous lots

Phospho-Akt (Ser473) Antibody #9271

Lot 7: 8/1/2002 Lot 9: 2/12/2004 Lot 8: 7/23/2003 Lot 10: 4/7/2006

1: C2C12 cells +insulin(100 nM for 10 min.)

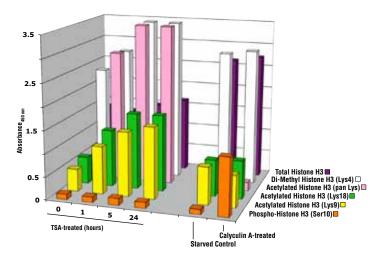

2: C2C12 cells, untreated



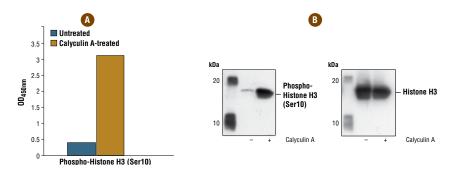
Verification of target-specificity using mouse models

Verification of specificity using known target activators and inhibitors

Phospho-Akt (Ser473) (D9E) XP™ Rabbit mAb #4060: IHC analysis of paraffin-embedded WT (left) and PTEN (-/-) (right) mouse prostate using #4060. Tissue courtesy of Dr. David Guertin, The Whitehead Institute for Biomedical Research, Cambridge, MA.


merae MEK inhibitor phospho-Erk blocks Erk activation phospho-Akt PI3K inhibitor blocks Akt activation DNA LPA (min) 15 15 15 120 LY294002 (min) U0126 (min) 120

APPLICATIONS KEY:


PathScan[®] Sandwich ELISA

	Reactivity
#7233 PathScan® Acetyl-Histone H2A Sandwich ELISA Kit	H, M, Mk
#7218 PathScan® Acetyl-Histone H2B (Lys5) Sandwich ELISA Kit	H, M, Mk
#7222 PathScan® Acetyl-Histone H2B (Lys20) Sandwich ELISA Kit	H, M, Mk
#7178 PathScan® Acetyl-Histone H2B Sandwich ELISA Kit	H, Mk
#7155 PathScan® Phospho-Histone H3 (Ser10) Sandwich ELISA Kit	H, M
#7207 PathScan® Phospho-Histone H3 (Ser10) Sandwich ELISA Antibody Pair	H, M
#7123 PathScan® Mono-Methyl-Histone H3 (Lys4) Sandwich ELISA Kit	H, M, Mk
#7124 PathScan® Di-Methyl-Histone H3 (Lys4) Sandwich ELISA Kit	H, M, Mk
#7125 PathScan® Tri-Methyl-Histone H3 (Lys4) Sandwich ELISA Kit	H, M, Mk
#7862 PathScan® Di-Methyl-Histone H3 (Lys9) Sandwich ELISA Kit	H, M, Mk
#7864 PathScan® Pan-Methyl-Histone H3 (Lys9) Sandwich ELISA Kit	H, M, Mk
#7866 PathScan® Tri-Methyl-Histone H3 (Lys27) Sandwich ELISA Kit	H, M, Mk
#7868 PathScan® Di-Methyl-Histone H3 (Lys36) Sandwich ELISA Kit	H, M, Mk
#7121 PathScan® Acetyl-Histone H3 (Lys9) Sandwich ELISA Kit	H, M, Mk
#7122 PathScan® Acetyl-Histone H3 (Lys18) Sandwich ELISA Kit	H, M, Mk
#7232 PathScan® Acetylated Histone H3 Sandwich ELISA Kit	H, M, Mk
#7209 PathScan® Acetylated Histone H3 Sandwich ELISA Antibody Pair	H, M, Mk
#7253 PathScan® Total Histone H3 Sandwich ELISA Kit	H, M, Mk
#7224 PathScan® Acetyl-Histone H4 (Lys8) Sandwich ELISA Kit	H, M, Mk
#7228 PathScan® Acetyl-Histone H4 (Lys12) Sandwich ELISA Kit	H, M, Mk
#7238 PathScan [®] Acetyl-Histone H4 Sandwich ELISA Kit	H, M, Mk

Scientists at CST develop the highest quality research tools that are robust, sensitive, and specific. Our line of PathScan[®] Sandwich ELISA products provides researchers with a selection of assays for the study of critical regulatory proteins. In-house development, production, and validation of these kits ensure the highest possible product quality. Technical support is provided by the same scientists that produce the products, and know them best.

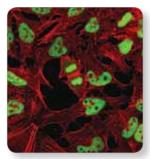
COS cells were treated with either Trichostatin A #9950 or Calyculin A #9902 to inhibit HDACs or phosphatases, respectively. Histone acetylation or phosphorylation was analyzed using PathScan[®] Sandwich ELISA Kits: #7155, # 7121, #7122, #7232, #7124, #7253.

PathScan[®] Phospho-Histone H3 (Ser10) Sandwich ELISA Kit #7155: Treatment of NIH/3T3 cells with Calyculin A #9902 causes accumulation of phospho-histone H3 (Ser10), detected by #7155, but does not affect the level of total histone H3 protein, detected by western analysis. OD_{450mm} readings are shown in (A), while the corresponding western blots using Phospho-Histone H3 (Ser10) Antibody #9701 (left panel) or Histone H3 Antibody #9715 (right panel), are shown in (B).

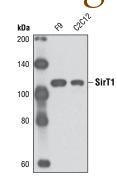
Supporting Products

For your convenience, CST offers a wide selection of products to support your research needs. These products are the same used in-house for antibody validation in applications including western blotting, chromatin immunoprecipitation, immunohistochemistry, flow cytometry, and immunofluorescent analysis, and therefore work optimally with CST™ antibodies.

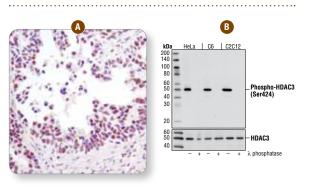
Complementary Products include:

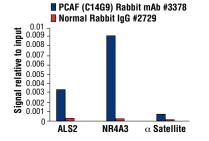

- Growth Factors and Cytokines
- **...** Inhibitors and Activators
- **::** Secondary Antibodies
- : Protein Markers
- **...** Detection Systems
- Buffers
- **...** Cellular Dyes

Control Products include:


Cell Extracts
 Control Proteins
 Isotype Controls
 Blocking Peptides
 PCR Primers

REACTIVITY KEY:


Epigenetic Regulators


HDAC1 (10E2) Mouse mAb #5356: Confocal IF analysis of HeLa cells using #5356 (green). Actin filaments were labeled with DY-554 phalloidin (red).

SirT1 (D60E1) Rabbit mAb (Mouse Specific) #3931: WB analysis of extracts from F9 and C2C12 cells using #3931.

Phospho-HDAC3 (S424) Antibody #3815: (A) IHC analysis of paraffin-embedded human lung carcinoma using #3815. **(B)** WB analysis of extracts from HeLa, C6, and C2C12 cells, untreated or λ -phosphatase-treated, using #3815 (upper) or HDAC3 Antibody #2632 (lower).

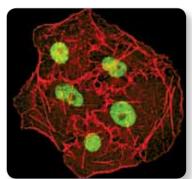
PCAF (C14G9) Rabbit mAb #3378: ChIP assays were performed with cross-linked chromatin from 4 x 10⁶ 293 cells treated with Forskolin #3828 (30 µM) and either 20 µl of #3378 or 2 µl of Normal Rabbit IgG #2729 using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. The enriched DINA was quantified by real-time PCR using human ALS2 exon 1 primers, SimpleChIP® Human NR4A3 Promoter Primers #4829, and SimpleChIP® Human a Satellite Repeat Primers #4486. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input chromatin (equivalent to one).

Selected Application References:

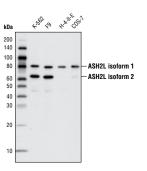
Histone Deacetylase 5 (HDAC5) Antibody #2082:

Xia, S. et al. (2010) Development 137, 1075-1084. (W)

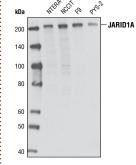
Acetyl-Histone

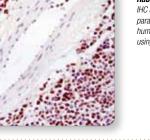

Histone Acetylases and Deacetylases

		Application	Reactivity
#4771	Acetyl-CBP (Lys1535)/p300 (Lys1499) Antibody	W, IP, ChIP	H, M, R, Mk
#4772	CBP Antibody	W	H, Mk
EW #5157	CLOCK (D45B10) Rabbit mAb	W, IP	H, M, R, Mk
#3305	GCN5L2 (C26A10) Rabbit mAb	W, IP, IF-IC	H, M, R, Mk, (B)
#2062	Histone Deacetylase 1 (HDAC1) Antibody	W	H, M, R, Mk
EW #5356	HDAC1 (10E2) Mouse mAb <i>featured</i>	W, IP, IF-IC	H, M, R, Mk
#2540	HDAC2 Antibody	W, IF-IC	H, M, R, Mk
#2545	HDAC2 Antibody (IP Preferred)	W, IP	H, M, Mk
EW #5113	HDAC2 (3F3) Mouse mAb	W, IP, IF-IC	H, M, R, Mk
EW #3815	Phospho-HDAC3 (Ser424) Antibody featured	W, IP, IHC-P, IF-IC	H, M, R, (Mk, C, X)
#2632	Histone Deacetylase 3 (HDAC3) Antibody	W	H, M, R, Mk
EW #3949	HDAC3 (7G6C5) Mouse mAb	W, IP, IF-IC	H, M, R, Mk
#3443	Phospho-HDAC4 (Ser246)/HDAC5 (Ser259)/HDAC7 (Ser155) (D27B5) Rabbit mAb	W, IP	H, M
#3424	Phospho-HDAC4 (Ser632)/HDAC5 (Ser498)/HDAC7 (Ser486) Antibody	W, IP	H, M
#2072	Histone Deacetylase 4 (HDAC4) Antibody	W	H, M, R, Mk
EW #5392	HDAC4 (4A3) Mouse mAb	W, IP	H, M, R, Mk
#2082	Histone Deacetylase 5 (HDAC5) Antibody	W, IP, IHC-P	H, M, R, Mk
#2882	Histone Deacetylase 7 (HDAC7) Antibody	W	H, M, R, Mk
#3378	PCAF (C14G9) Rabbit mAb <i>featured</i>	W, IP, ChIP	H, M, R, Mk, (B)
#2327	Phospho-SirT1 (Ser27) Antibody	W	Η
#2314	Phospho-SirT1 (Ser47) Antibody	W, IP, IF-IC,F	Н
EW #3931	SirT1 (D60E1) Rabbit mAb (Mouse Specific) featured	W, IP	M
#2496	SirT1 (C14H4) Rabbit mAb	W, IP	Н
#2310	SirT1 Antibody	W	Н
#2493	SirT1 (D739) Antibody	W, IP, IF-IC	H, Mk
#2028	SirT1 Antibody (Mouse Specific)	W, IP, IF-IC	M
#2313	SirT2 Antibody	W	H, M, R, Mk
#2627	SirT3 (C73E3) Rabbit mAb	W, IP, IHC-P	H, R, Mk
#2590	SirT6 Antibody	W, IP, IF-IC	Η
#4562	TFII-I Antibody	W, IP, IHC-P	H, M, Mk
EW #4169	TFIIB (2F6A3H4) Mouse mAb	W, IP	H, M, R, Mk
#3966	TRRAP (D2966) Antibody	W, IP, IF-IC	H, M, R, Mk
#3967	TRRAP (P2032) Antibody	W, IP	H, M, Mk
#2152	WSTF Antibody	W, IP	H, M, R, Mk
#9950	Trichostatin A (TSA)		


H human / M mouse / R rat / Hm hamster / Mk monkey / C chicken / Mi mink / Dm D. melanogaster / X Xenopus / Z zebra fish / B bovine / Dg dog / Pg pig / Sc S. cerevisiae / All all species expected / () 100% sequence homology

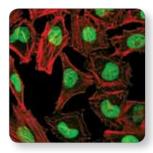
Methyltransferases and Demethylases


	<i>y</i>	in ansierases and bernein	iyid SCS	
			Application	Reactivity
IEW	#5019	ASH2L (D93F6) XP™ Rabbit mAb <i>featured</i>	W, IP, IF-IC	H, M, R, Mk, (Dm)
NEW	#5032	DNMT1 (D63A6) XP™ Rabbit mAb <i>featured</i>	W, IF-IC	H, M, R, Mk, (B)
NEW	#5119	DNMT1 (D59A4) Rabbit mAb	W, IP	H, M, R, Mk, (B)
	#3598	DNMT3A (D23G1) Rabbit mAb	W, IP	H, M, R, Mk, (B)
	#2160	DNMT3A Antibody	W, IP	H, M, R, Mk, (B)
	#2161	DNMT3B Antibody	W, IP	H, M, R, Mk, (Z)
	#2196	ESET (C1C12) Rabbit mAb	W, IP, IF-IC	H, Mk
NEW	#5246	Ezh2 (D2C9) XP™ Rabbit mAb <i>featured</i>	W, IP, IHC-P, IF-IC ChIP	, H, M, R, Mk
	#4905	Ezh2 Antibody	W, IP, ChIP	H, M, R, Pg
	#3147	Ezh2 (AC22) Mouse mAb	W, IF-IC	H, M, R, Mk
	#3306	G9a/EHMT2 (C6H3) Rabbit mAb	W, IF-IC	H, M, R, Mk, (B, Pg)
NEW	#3876	JARID1A (D28B10) XP™ Rabbit mAb <i>featured</i>	W, IP, IF-IC	H, M, (R, B)
	#3273	JARID1B Antibody	W, IP	H, Mk
NEW	#5361	JARID1C (D29B9) Rabbit mAb	W, IP	H, M, (Mk, Pg)
	#2621	JMJD1B/JHDM2B Antibody	W, IP, IF-IC	H, M, R, Mk
	#3314	JMJD1B (C69G2) Rabbit mAb	W, IP, IF-IC	H, Mk
	#3100	JMJD1B (C6D12) Rabbit mAb	W, IP, IHC-P	H, Mk
NEW	#5377	JMJD1B (6A1-1F5) Mouse mAb	W, IP, IF-IC	H, M, R, Mk
	#3393	JMJD2A (C70G6) Rabbit mAb	W, IP, IF-IC	H, M, R, (Mk)
	#2898	JMJD2B Antibody	W, IP	H, (Mk)
	#3457	JMJD3 Antibody	W	H, M, (Mk)
	#2184	LSD1 (C69G12) Rabbit mAb	W, IP, IHC-P, IHC-F, IF-IC	H, M, R, Mk
	#2139	LSD1 Antibody	W, IP, IHC-P, IF-IC, F	H, M, R, Mk
	#4064	LSD1 (1B2E5) Mouse mAb	W	H, M, R, Mk
NEW	#4218	LSD1 (1E5-H2) Mouse mAb	W, IP	H, Mk
	#2018	MEP50 (D56B8) Rabbit mAb	W, IP	H, M, R, Mk
	#2828	MEP50 (P328) Antibody	W, IP	H
	#2823	MEP50 Antibody	W, IP, IF-IC	Н
NEW	#4789	Nucleomethylin Antibody	W	Η
	#2449	PRMT1 (A33) Antibody	W, IP, IF-IC	H, M, R, Mk, (B)
	#2453	PRMT1 (F339) Antibody	W	H, M, R, Mk, (B)
	#3379	PRMT4/CARM1 (C31G9) Rabbit mAb	W, IP, IF-IC	H, M, R, Mk
	#4438	PRMT4/CARM1 Antibody	W, IP	H, M, R, Mk
	#2252	PRMT5/Skb1Hs Methyltransferase Antibody	W, IP	H, M, R, Mk
	#2825	SET7/SET9 (C24B1) Rabbit mAb	W	H, M, R, Mk
	•	SET7/SET9 Antibody	W, IF-IC	H, M, R, Mk
		SET8 (C18B7) Rabbit mAb	W, IF-IC	H, M, R, Mk, (B, Pg)
NEW		SMYD2 Antibody	W	H, M, R, Mk, (B, Pg)
		SUV39H1 Histone Methyltransferase Antibody	W	Н, М
		SUZ12 (D39F6) XP™ Rabbit mAb	W,IP, IF-IC, ChIP	H, M, R, Mk
			11 ,11 , 11 10, 0111	, IVI, IX, IVIN


DNMT1 (D63A6) XPTM Rabbit mAb #5032: Confocal IF analysis of COS-7 cells using #5032 (green). Actin filaments were labeled using DY-554 phalloidin (red).

ASH2L (D93F6) XP™ Rabbit mAb #5019: WB analysis of extracts from various cell lines using #5019.

JARID1A (D28B10) XP™ Rabbit mAb #3876: WB analysis of extracts from various cell lines using #3876.

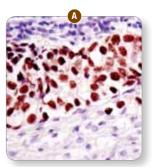

Ezh2 (D2C9) XPTM Rabbit mAb #5246: IHC analysis of paraffin-embedded human lymphoma using #5246.

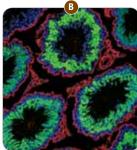
Ezh2 (AC22) Mouse mAb #3147: Kalushkova, A. et al. (2010) *PLoS One* 5, e11483. (W) Van Dessel, N. et al. (2010) *Nucleic Acids Res.*, in press. (W)

Selected Application References:

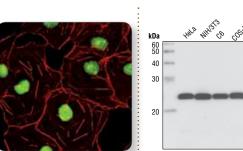
UNPARALLELED PRODUCT QUALITY, VALIDATION, AND TECHNICAL SUPPORT

HP1 and Other Chromatin Proteins



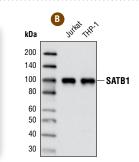

HF

 CHAF1A (D77D5) XP™ Rabbit mAb #5480: Confocal IF analysis of HeLa cells using #5480 (green). Actin filaments were labeled with DY-554 phalloidin (red).


P1		Application	Reactivity
#2623	HP1a (C7F11) Rabbit mAb <i>featured</i>	W, IP, IHC-P, IF-IC	H, M, R, Mk
#2616	HP1a Antibody	W, IP, IHC-P, IF-IC, F	H, M, R, Mk, (B)
#2613	HP1β Antibody	W	H, M, R, Mk, (B)
#2600	Phospho-HP1γ (Ser83) Antibody	W, IP, IF-IC	H, M, R, Mk, (Dm, B)
#2619	HP1y Antibody	W, IP, IF-IC, F	H, M, R, Mk

Other Chromatin Proteins

NUT (C52B1) Rabbit mAb #3625: (A) IHC analysis of paraffin-embedded human midline carcinoma using #3625. (B) Confocal IF analysis of rat testes using #3625 (green) and Pan-Keratin (C11) Mouse mAb #4545 (red). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye).



HMGB1 Antibody #3935: Confocal IF analysis of COS-7 cells using #3935 (green). Actin filaments were labeled using DY-554 phalloidin (red).

14

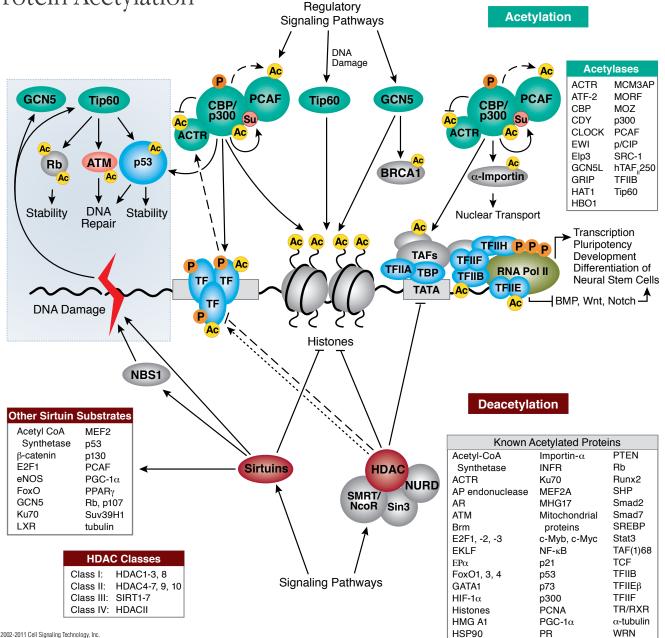
HP1a (C7F11) Rabbit mAb #2623: WB analysis of extracts from HeLa, NIH/3T3, C6, and COS-7 cells using #2623.

SATB1 (L745) Antibody #3650: (A) Confocal IF analysis of 293 cells using #3650 (green). Actin filaments were labeled with DY-554 phalloidin (red). (B) WB analysis of extracts from Jurkat and THP-1 cell lines using #3650.

Ome			
#2990	ASF1A (C6E10) Rabbit mAb	W, IP, IHC-P, IF-IC	H, M, Mk, (C, B)
#2902	ASF1B (C70E2) Rabbit mAb	W, IP, IF-IC	H, Mk
#2769	ASF1B Antibody	W, IP	H, Mk, (M)
#2830	Bmi1 Antibody	W, IF-IC	H, R, Mk, (B)
#3508	Brg1 (A52) Antibody	W, IF-IC	H, M, Mk, (R)
#3514	Brg1 (P680) Antibody	W	H, M, R, Mk
NEW #5480	CHAF1A (D77D5) XP™ Rabbit mAb <i>featured</i>	W, IP, IF-IC	H, Mk
NEW #4170	CHD2 Antibody	W	H, M, R, Mk
NEW #4241	CHD3 Antibody	W, IP	H, M, Mk
NEW #4245	CHD4 Antibody	W	H, M, R, (Mk, B)
#3417	CTCF (D1A7) XP™ Rabbit mAb	W, IP, IF-IC, ChIP	H, R, Mk, (B)
#3418	CTCF (D31H2) XP™ Rabbit mAb	W, IP, IHC-P, IF-IC, ChIP	H, M, R, Mk, (B)
#2899	CTCF Antibody	W, IP, IF-IC, ChIP	H, M, R, Mk
NEW #4880	Phospho-DBC1 (Thr454) Antibody	W, IP, IF-IC	Н
NEW #5693	DBC1 Antibody	W, IP	H, M, R, Mk
NEW #5269	HMGA2 Antibody	W, IP	H, M, R
NEW #3935	HMGB1 Antibody <i>featured</i>	W, IF-IC	H, M, R, Mk, (Hm, B, Pg
#2088	LEDGF (C57G11) Rabbit mAb	W, IHC-P, IF-IC, F	H, M, R, (Mk)
#3896	MBD3 Antibody	W	H, M, R, Mk
#3456	MeCP2 (D4F3) XP™ Rabbit mAb	W, IP, IHC-P, IF-IC	H, M, R, Mk
NEW #3625	NUT (C52B1) Rabbit mAb <i>featured</i>	W, IP, IHC-P, IF-F	H, R, (Mk)
NEW #3497	PHF2 (D45A2) Rabbit mAb	W, IP	H, M, R, Mk
NEW #3934	PHF20 (D96F6) XP™ Rabbit mAb	W, IP, IF-IC	H, M, R, Mk, (B)
NEW #4522	RBAP46 Antibody	W	H, M, R, Mk, (B)
NEW #4633	RBAP46/RBAP48 Antibody	W	H, M, R, Mk, (C)
#2820	Ring1A Antibody	W	H, M, R, Mk
NEW #5694	RING1B (D22F2) XP™ Rabbit mAb	W, IP, IF-IC, ChIP	H, M, R, Mk
NEW #4028	Phospho-SATB1 (Ser47) Antibody	W	H, M, R, (Mk, B)
NEW #3650	SATB1 (L745) Antibody <i>featured</i>	W, IP, IF-IC	H, (Mk)
NEW #3643	SATB1 (P472) Antibody	W, IP	H, M, R, (Mk, B, Pg)
NEW #5329	SMC2 (D23C5) Rabbit mAb	W, IP	H, M, R, Mk
NEW #5394	SMC2 (D91E3) Rabbit mAb	W, IP	H, R, Mk
NEW #5696	SMC3 (D47B5) Rabbit mAb	W, IP, IF-IC	H, M, R, Mk
NEW #5547	SMC4 (D14E2) Rabbit mAb	W, IP	H, M, R, Mk, (X, B)
NEW #4239	STAG2 Antibody	W, IP	H, M, R, Mk
NEW #5433	TERF2IP (D9H4) Rabbit mAb	W, IP	H, M, R, Mk
#4733	Topoisomerase IIa Antibody	W, IP, F	H, M, R, Mk

Selected Application References:

ASF1B (C70E2) Rabbit mAb #2902:


Jasencakova, Z. et al. (2010) Mol. Cell 37, 736-743. (IF-IC)

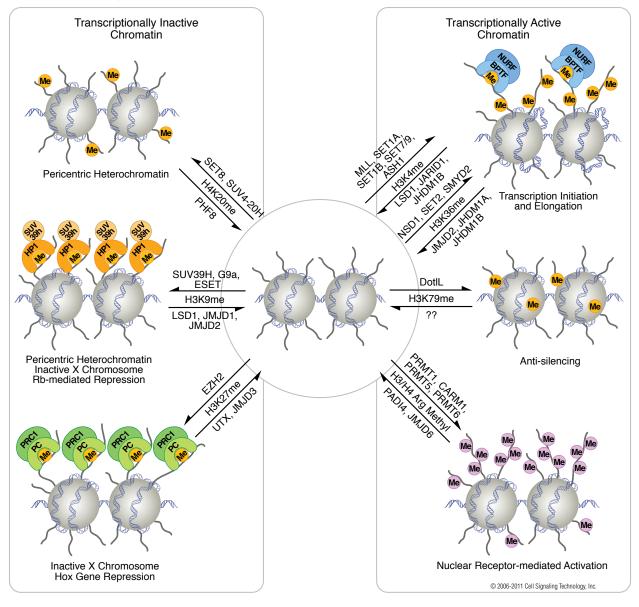
NUT (C52B1) Rabbit mAb #3625:

Haack, H. et al. (2009) Am. J. Surg. Pathol. 33, 984-991. (IHC-P)

Signaling Pathways

Protein Acetylation

© 2002-2011 Cell Signaling Technology, Inc.


Pathway Description: Protein acetvlation plays a crucial role in regulating chromatin structure and transcriptional activity. Many transcriptional coactivators possess intrinsic acetylase activity, while transcriptional corepressors are associated with deacetylase activity. Acetylation complexes (such as CBP/p300 and PCAF) or deacetylation complexes (such as Sin3, NuRD, NcoR and SMRT) are recruited to DNA-bound transcription factors (TFs) in response to signaling pathways. Histone hyperacetylation by histone acetyltransferases (HATs) is associated with transcriptional activation, whereas histone deacetylation by histone deacetylases (HDACs) is associated with transcriptional repression. Histone acetylation stimulates transcription by remodeling higher order chromatin structure, weakening histone-DNA interactions, and providing binding sites for transcriptional activation complexes containing proteins that possess bromodomains, which bind acetylated lysine. Histone deacetylation represses transcription through

an inverse mechanism involving the assembly of compact higher order chromatin and the exclusion of bromodomain-containing transcription activation complexes. Histone hypoacetylation is a hallmark of silent heterochromatin. Site-specific acetylation of a growing number of non-histone proteins, including p53 and E2F, has been shown to regulate their activity, localization, specific interactions, and stability/ degradation, therefore controlling a variety of cellular processes, such as transcription, proliferation, apoptosis, and differentiation. At an organismal level, acetylation plays an important role in immunity, circadian rhythmicity, and memory formation. Protein acetylation is becoming a favorable target in drug design for numerous disease conditions.

For selected reviews visit: www.cellsignal.com

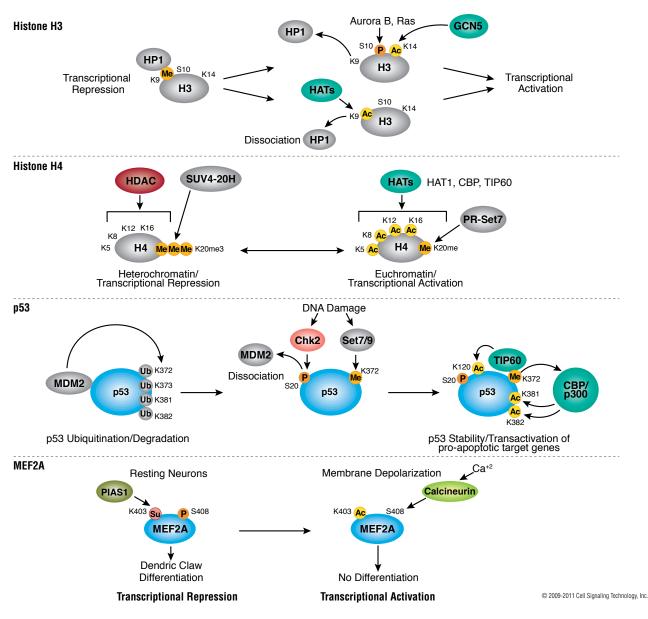
Histone Methylation

Pathway Description: The nucleosome, made up of four histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have more recently been shown to be dynamic proteins, undergoing multiple types of post-translational modifications. Two such modifications, methylation of arginine and lysine residues are major determinants for formation of active and inactive regions of the genome. Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su[var]3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation has been implicated in both transcriptional activation (H3 Lys4, 36, 79) and silencing (H3 Lys9, 27, H4 Lys20).

Unlike acetylation, methylation does not alter the charge of arginine and lysine residues and is unlikely to directly modulate nucleosomal interactions required for chromatin folding. While the mechanisms by which arginine methylation regulates transcription are unknown, lysine methylation coordinates the recruitment of chromatin modifying enzymes. Chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), Tudor domains (53BP1), and WD-40 domains (WDR5) are among a growing list of methyl-lysine binding

modules found in histone acetyltransferases, deacetylases, methylases and ATP-dependent chromatin remodeling enzymes. Lysine methylation provides a binding surface for these enzymes, which then regulate chromatin condensation and nucleosome mobility in order to maintain local regions of active or inactive chromatin. In addition, lysine methylation can block binding of proteins that interact with unmethylated histones or directly inhibit catalysis of other regulatory modifications on neighboring residues. The presence of methyl-lysine binding modules in the DNA repair protein 53BP1 suggests roles for lysine methylation in other cellular processes.

Histone methylation is crucial for proper programming of the genome during development and misregulation of the methylation machinery can lead to diseased states such as cancer. Until recently, methylation was believed to be an irreversible, stable epigenetic mark that is propagated through multiple cell divisions, maintaining a gene in an active or inactive state. While there is no argument that methylation is a stable mark, recent identification of histone demethylases such as LSD1/AOF2, JMJD1, JMJD2 and JHDM1 has shown that methylation is reversible and provides a rational for how genomes might be reprogrammed during differentiation of individual cell lineages.


For selected reviews visit: www.cellsignal.com

----> Direct Stimulatory Modification

- Direct Inhibitory Modification

- Tentative Stimulatory Modification
 - Tentative Inhibitory Modification
- Transcriptional Stimulatory Modification
 Transcriptional Inhibitory Modification

Examples of Crosstalk Between Post-translational Modifications

Pathway Description: Post-translational modifications (PTMs) have recently emerged as major regulators of protein function. Originally described in histones, these various chemical modifications (methylation, acetylation, phosphorylation, sumoylation, and more) have now been identified in nonhistone proteins as well. Early work defined a putative role for each of these modifications, for instance, acetylation correlates with activation and methylation with repression. However, more recent studies indicate that some of these modifications could trigger either activation or silencing in a context dependent manner. For instance, methylation of histone H3 Lys9 correlates with repression, while methylation of H3 Lys4 correlates with activation. Furthermore, each of these moieties can be either mono-, di- or tri-methylated, and depending on the degree of methylation, the biological output will be completely different. Until recently, PTMs were considered independently, under the assumption that their functions would not be related to one another. It is now clear that PTMs work in concert, and the crosstalk between different modifications determines the final biological read-out. In this context, some modifications can influence others, and it appears that specific combinations of these modifications can form a dynamic "code". We provide a few examples of this type of crosstalk above. Although each of the modifications

shown here are occurring in cis, there are now clear examples, at least for histones, where modifications in one histone molecule can regulate modifications in other histones in trans. Although there are now many examples of these "functional networks", it is likely that we have just begun to scratch the surface. Better antibodies and novel technologies will help to complete this crosstalk puzzle, for which the specific fine-tuning appears critical to determine life as we know it.

Selected Reviews:

Enzyme

Latham, J.A. and Dent, S.Y. (2007) Cross-regulation of histone modifications. Nat. Struct. Mol. Biol. 14, 1017-1024. Yang, X.J., and Seto, E. (2008) Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol. Cell 31, 449-461. Kouzarides, T. (2007) Chromatin modifications and their function. Cell 128, 693-705.

Berger, S.L. (2007) The complex language of chromatin regulation during transcription. Nature 447, 407-412.

Kinase

GTPase

Histone Modification Table

Acetylation

Histone	Site	Histone-modifying Enzymes	Proposed Function	Ref. #
H2A	Lys4 (S. cerevisiae)	Esa1	transcriptional activation	(1)
	Lys5 (mammals)	Tip60, p300/CBP	transcriptional activation	(2,3
	Lys7 (S. cerevisiae)	Hat1	unknown	(4
		Esa1	transcriptional activation	(1
H2B	Lys5	p300, ATF2	transcriptional activation	(3,5
	Lys11 (S. cerevisiae)	Gcn5	transcriptional activation	(6)
	Lys12 (mammals)	p300/CBP, ATF2	transcriptional activation	(3,5)
	Lys15 (mammals)	p300/CBP, ATF2	transcriptional activation	(3,5
	Lys16 (S. cerevisiae)	Gcn5, Esa1	transcriptional activation	(6
	Lys20	p300	transcriptional activation	(3
H3	Lys4 (S. cerevisiae)	Esa1	transcriptional activation	(1
		Hpa2	unknown	(7
	Lys9	unknown	histone deposition	(8)
		Gcn5, SRC-1	transcriptional activation	(9,10)
	Lys14	unknown	histone deposition	(8)
		Gcn5, PCAF	transcriptional activation	(3,11
		Esal, Tip60	transcriptional activation	(1,2
			DNA repair	(11,12
		SRC-1	transcriptional activation	(10
		Elp3	transcriptional activation (elongation)	(13
		Hpa2	unknown	(7
		hTFIIIC90	RNA polymerase III transcription	(14)
-		TAF1	RNA polymerase II transcription	(15
		Sas2	euchromatin	(16
		Sas3	transcriptional activation (elongation) transcriptional activation	(17
	Luc10	p300 Gcn5	transcriptional activation, DNA repair	(3)
	Lys18	p300/CBP	DNA replication, transcriptional activation	(3,18)
	Lys23	unknown	histone deposition	(8)
	Lyszo	Gcn5	transcriptional activation, DNA repair	(9)
		Sas3	transcriptional activation (elongation)	(17)
		p300/CBP	transcriptional activation	(3,18)
	Lys27	Gcn5	transcriptional activation	(6)
	Lys56 (S. cerevisiae)		transcriptional activation	(19)
		Spt10	DNA repair	(20)
H4	Lys5	Hat1	histone deposition	(21)
114	2,50		transcriptional activation	(1,2)
		Esal, Tip60	DNA repair	(11,12)
		ATF2	transcriptional activation	(5)
		Hpa2	unknown	(7)
		p300	transcriptional activation	(3)
	Lys8	Gcn5, PCAF	transcriptional activation	(3,22)
	1	F T 00	transcriptional activation	(1,2)
		Esal, Tip60	DNA repair	(11,12)
		ATF2	transcriptional activation	(5)
		Elp3	transcriptional activation (elongation)	(13)
		p300	transcriptional activation	(3)
	Lys12	Hat1	histone deposition	(21)
			telomeric silencing	(23)
		Esal, Tip60	transcriptional activation	(1,2)
			DNA repair	(11,12)
		Hpa2	unknown	(7)
		p300	transcriptional activation	(3)
	Lys16	Gcn5	transcriptional activation	(22)
		MOF (D. melanogaster)	transcriptional activation	(24
		Esal Tin60	transcriptional activation	(1,2)
		Esal, Tip60	DNA repair	(11,12)
		ATF2	transcriptional activation	(5)
		Sas2	euchromatin	(2,6)
	Lys91 (S. cerevisiae)	Hat1/Hat2	chromatin assembly	(25)

Methylation

stone	Site	Histone-modifying Enzymes	Proposed Function	Ref. #
H1	Lys26	Ezh2	transcriptional silencing	(48,49)
H3	Lys4	Set1 (S. cerevisiae)	permissive euchromatin (di-Me)	(26)
		Set7/9 (vertebrates)	transcriptional activation (tri-Me)	(27
		MLL, ALL-1	transcriptional activation	(28,29
		Ash1 (D. melanogaster)	transcriptional activation	(30
	Arg8	PRMT5	transcriptional repression	(31
	Lys9	Suv39h,Clr4	transcriptional silencing (tri-Me)	(32,33
		G9a	transcriptional repression genomic imprinting	(34
		SETDB1	transcriptional repression (tri-Me)	(35
		Dim-5 (N.crassa), Kryptonite (A. thaliana)	DNA methylation (tri-Me)	(36,37
		Ash1 (D. melanogaster)	transcriptional activation	(30
	Arg17	CARM1	transcriptional activation	(18
	Lys27	Ezh2	transcriptional silencing	(38
			X inactivation (tri-Me)	
		G9a	transcriptional silencing	(34
	Lys36	Set2	transcriptional activation (elongation)	(39
	Lys79		euchromatin	(40
		Dot1	transcriptional activation (elongation)	(41
			checkpoint response	(42
H4	Arg3	PRMT1	transcriptional activation	(43
		PRMT5	transcriptional repression	(31
	Lys20	PR-Set7	transcriptional silencing (mono-Me)	(44
		Suv4-20h	heterochromatin (tri-Me)	(45
		Ash1 (D. melanogaster)	transcriptional activation	(30
		Set9 (S. pombe)	checkpoint response	(46
	Lys59	unknown	transcriptional silencing	(47

Phosphorylation

Histone	Site	Histone-modifying Enzymes	Proposed Function	Ref. #
H1	Ser27	unknown	transcriptional activation, chromatin decondensation	(48,49)
H2A	Ser1	unknown	mitosis, chromatin assembly	(50)
		MSK1	transcriptional repression	(51)
	Thr119 (D. melanogaster)	NHK1	mitosis	(52)
	Ser122 (S. cerevisiae)	unknown	DNA repair	(53)
	Ser129 (S. cerevisiae)	Mec1, Tel1	DNA repair	(54,55)
	Ser139 (mammalian H2A.X)	ATR, ATM, DNA-PK	DNA repair	(56-58)
H2B	Ser10 (S. cerevisiae)	Ste20	apoptosis	(59)
	Ser14 (vertebrates)	Mst1	apoptosis	(60)
		unknown	DNA repair	(61)
	Ser33 (D. melanogaster)	TAF1	transcriptional activation	(62)
H3	Thr3	Haspin/Gsg2	mitosis	(63)
	Ser10	Aurora-B kinase	mitosis, meiosis	(64,65)
		MSK1, MSK2	immediate-early gene activation	(66)
		IKK-α	transcriptional activation	(67)
		Snf1	transcriptional activation	(68)
	Thr11 (mammals)	Dlk/Zip	mitosis	(69)
	Ser28 (mammals)	Aurora-B kinase	mitosis	(70)
		MSK1, MSK2	immediate-early activation	(66,71)
H4	Ser1	unknown	mitosis, chromatin assembly	(50)
		CK2	DNA repair	(72)

Ubiquitylation

Histone	Site	Histone-modifying Enzymes	Proposed Function	Ref. #
H2A	Lys119 (mammals)	Ring2	spermatogenesis	(73)
H2B	Lys120 (mammals)	UbcH6	meiosis	(74)
	Lys123 (S. cerevisiae)	Rad6	transcriptional activation euchromatin	(75)

Sumoylation

Histone	Site	Histone-modifying Enzymes	Proposed Function	Ref. #
H2A	Lys126 (S. cerevisiae)	Ubc9	transcriptional repression	(76)
H2B	Lys6 or Lys7 (S. cerevisiae)	Ubc9	transcriptional repression	(76)
H4	N-terminal tail (S. cerevisiae)	Ubc9	transcriptional repression	(77)

Biotinylation

Histone	Site	Histone-modifying Enzymes	Proposed Function	Ref. #
H2A	Lys9	biotinidase	unknown	(78)
	Lys13	biotinidase	unknown	(78)
H3	Lys4	biotinidase	gene expression	(79)
	Lys9	biotinidase	gene expression	(79)
	Lys18	biotinidase	gene expression	(79)
H4	Lys12	biotinidase	DNA damage response	(80,81)

Histone Modification Table Description: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), and linker histone H1 are the primary building blocks of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have more recently been shown to be dynamic proteins, undergoing multiple types of post-translational modifications that regulate chromatin condensation and DNA accessibility. For example, acetylation of lysine residues has long been associated with histone deposition and transcriptional activation, and more recently found to be associated with DNA repair. Phosphorylation of serine and threonine residues facilitates chromatin condensation during mitosis and transcriptional activation of transcriptionally active and inactive regions of chromatin and is crucial for proper programming of the genome during development. This table provides a referenced list of many known histone modifications, the associated modifying enzymes, and proposed functions.

References:

- (1) Clarke, A.S. et al. (1999) *Mol. Cell Biol.* 19, 2515–2526.
- (2) Kimura, A. and Horikoshi, M. (1998) Genes Cells 3, 789-800.
- (3) Schiltz, R.L. et al. (1999) J. Biol. Chem. 274, 1189–1192.
- (4) Verreault, A. et al. (1998) *Curr. Biol.* 8, 96–108.
- (5) Kawasaki, H. et al. (2000) Nature 405, 195-200.
- (6) Suka, N. et al. (2001) *Mol. Cell* 8, 473–479.
- (7) Angus-Hill, M.L. et al. (1999) J. Mol. Biol. 294, 1311–1325.
- (8) Sobel, R.E. et al. (1995) Proc. Natl. Acad. Sci. USA 92, 1237-1241.
- (9) Grant, P.A. et al. (1999) J. Biol. Chem. 274, 5895–5900.
- (10) Spencer, T.E. et al. (1997) Nature 389, 194-198.
- (11) Bird, A.W. et al. (2002) Nature 419, 411-415.
- (12) Ikura, T. et al. (2000) Cell 102, 463-473.
- (13) Winkler, G.S. et al. (2002) Proc. Natl. Acad. Sci. USA 99, 3517-3522.
- (14) Hsieh, Y.J. et al. (1999) Mol. Cell. Biol. 19, 7697-7704.
- (15) Mizzen, C.A. et al. (1996) *Cell* 87, 1261–1270.
- (16) Sutton, A. et al. (2003) J. Biol. Chem. 278, 16887-16892
- (17) Howe, L. et al. (2001) *Genes Dev.* 15, 3144–3154.
- (18) Daujat, S. et al. (2002) Curr. Biol. 12, 2090-2097.
- (19) Xu, F. et al. (2005) Cell 121, 375-385.

eXceptional Performance[™], Cell Signating Technology[®], PathScan[®], XMT[™], XP[™], SimpleChIP[®], and CST[™] are trademarks of Cell Signating Technology, Inc. / Selected rabbit monoclonal antibodies are produced under license (granting certain rights including those under U.S. Patents No. 5675.063 and/or 7.429.487 from Epitomics, Inc. / Alexa Fluor[®] and SYBR[®] Green are trademarks of Molecular Probes, Inc. / DRAGP[®] is a trademark of Blostatus Limited.

- (20) Masumoto, H. et al. (2005) Nature 436, 294-298. (21) Parthun, M.R. et al. (1996) Cell 87, 85-94. (22) Kuo, M.H. et al. (1996) Nature 383, 269-272. (23) Kelly, T.J. et al. (2000) Mol. Cell. Biol. 20, 7051-7058. (24) Hilfiker, A. et al. (1997) EMBO J. 16, 2054-2060. (25) Ye, J. et al. (2005) Mol. Cell. 18, 123–130. (26) Briggs, S.D. et al. (2001) Genes Dev. 15, 3286-3295. (27) Wang, H. et al. (2001) Mol. Cell. 8, 1207-1217. (28) Nakamura, T. et al. (2002) Mol. Cell. 10, 1119-1128. (29) Sedkov, Y. et al. (2003) Nature 426, 78-83. (30) Beisel, C. et al. (2002) Nature 419, 857-862 (31) Pal, S. et al. (2004) Mol. Cell. Biol. 24, 9630-9645. (32) Rea, S. et al. (2000) Nature 406, 593-599. (33) Nakayama, J. et al. (2001) Science 292, 110-113 (34) Tachibana, M. et al. (2001) J. Biol. Chem. 276, 25309-25317. (35) Schultz, DzC. et al. (2002) Genes Dev. 16, 919-932. (36) Tamaru, H. and Selker, E.U. (2001) Nature 414, 277–283. (37) Johnson, L. et al. (2002) Curr. Biol. 12, 1360-1367. (38) Cao, R. et al. (2002) Science 298, 1039–1043. (39) Krogan, N.J. et al. (2002) Mol. Cell. Biol. 23, 4207-4218. (40) Feng, Q. et al. (2002) Curr. Biol. 12, 1052-1058. (41) Krogan, N.J. et al. (2003) Mol. Cell. 11, 721-729. (42) Huyen, Y. et al. (2004) Nature 432, 406-411. (43) Strahl, B.D. et al. (2001) Curr. Biol. 11, 996–1000. (44) Nishioka, K. et al. (2002) Mol. Cell. 9, 1201-1213. (45) Schotta, G. et al. (2004) Genes Dev. 18, 1251-1260. (46) Sanders, S.L. et al. (2004) Cell 119, 603-614. (47) Zhang, L. et al. (2003) Chromosoma 112, 77–86. (48) Daujat, S. et al. (2005) J. Biol. Chem. 280, 38090-38095. (49) Kuzmichev, A. et al. (2004) Mol. Cell 14, 183-193. (50) Barber, C.M. et al. (2004) Chromosoma 112, 360-371 (51) Zhang, Y. et al. (2004) J. Biol. Chem. 279, 21866-21872. (52) Aihara, H. et al. (2004) Genes Dev. 18, 877-888. (53) Harvey, A.C. et al. (2005) Genetics 170, 543-553. (54) Downs, J.A. et al. (2000) Nature 408, 1001–1004. Shroff, R. et al. (2004) Curr. Biol. 14, 1703-1711. (55) (56) Ward, I.M. and Chen J. (2001) J. Biol. Chem. 276, 47759-47762. (57) Burma, S. et al. (2001) J. Biol. Chem. 276, 42462-42467. (58) Park, E.J. et al. (2003) Nucleic Acids Res. 31, 6819-6827. (59) Ahn, S.H. et al. (2005) Cell 120, 25-36. (60) Cheung, W.L. et al. (2003) Cell 113, 507-517. (61) Fernandez-Capetillo, O. et al. (2004) J. Exp. Med. 199, 1671-1677. (62) Maile, T. et al. (2004) Science 304, 1010-1014. (63) Dai, J. et al. (2004) Genes Dev. 19, 472–488. (64) Hendzel, M.J. et al. (1997) Chromosoma 106, 348-360. (65) Hsu, J.Y. et al. (2000) Cell 102, 279–291. (66) Soloaga, A. et al. (2003) EMBO J. 22, 2788-2797. (67) Anest, V. et al. (2003) Nature 423, 659–663. (68) Lo, W.S. et al. (2001) Science 293, 1142-1146. (69) Preuss, U. et al. (2003) Nucleic Acids Res. 31, 878-885. (70) Goto, H. et al. (2002) Genes Cells 7, 11-17. (71) Zhong, S. et al. (2001) J. Biol. Chem. 276, 33213-33219. (72) Cheung, W.L. et al. (2005) Curr. Biol. 15, 656-660. (73) Wang, H. et al. (2004) Nature 431, 873-878. (74) Zhu, B. et al. (2005) Mol. Cell. 20, 601-611. (75) Robzyk, K. et al. (2000) Science 287, 501-504. (76) Nathan, D. et al. (2006) Genes Dev. 20, 966-976
- (77) Shiio, Y. and Eisenman, R.N. (2003) Proc. Natl. Acad. Sci. USA 100, 13225–13230.
- (78) Chew, Y.C. et al. (2006) J. Nutr. Biochem. 17, 225–233.
- (79) Kobza, K. et al. (2005) FEBS J. 272, 4249-4259.
- (80) Camporeale, G. et al. (2004) Eur. J. Biochem. 271, 2257–2263.
- (81) Kothapalli, N. and Zempleni, J. (2004) FASEB J. 18, 103–104.

All content of this Brochure and Technical Reference is protected by U.S. and foreign intellectual property laws. You may not copy, modify, upload, download, post, transmit, republish or distribute any of the content without our prior written permission except for your own personal and noncommercial purposes. Except as provided in the preceding sentence, nothing contained in this Brochure and Technical Reference shall be construed as granting al license or other rights under any patent, trademark, copyright or other intellectual property of Cell Signaling Technology trademark, service mark or log may be avoid a log trademark laws.

UNPARALLELED PRODUCT QUALITY, VALIDATION, AND TECHNICAL SUPPORT

USA Headquarters

Cell Signaling Technology, Inc. Tel: 978-867-2300 E-mail: info@cellsignal.com

International Subsidiaries

Cell Signaling Technology (China) Limited Tel: (86) 21-5835-6288 E-mail: info@cst-c.com.cn **Cell Signaling Technology Europe** Tel: +31 (0)71 568 1060 E-mail: info@cellsignal.eu **Cell Signaling Technology Japan, K.K.** Tel: 03 (5652) 0213 E-mail: info@cstj.co.jp **www.cstj.co.jp**

www.cellsignal.com

International Distributors

ARGENTINA: Migliore Laclaustra S.r.I. Tel: 5411-43729045 E-mail: info@migliorelaclaustra.com.ar

AUSTRALIA: Genesearch Pty. Ltd. Toll Free: 1800 074 278 www.genesearch.com.au

BELGIUM/LUXEMBOURG: BIOKÉ Tel: 0800-71640 / www.bioke.com

BRAZIL: Uniscience Do Brazil Tel: (011) 3622 2320 www.uniscience.com

CANADA: New England Biolabs Ltd. Toll Free: 1-800-387-1095 / www.neb.ca

CHILE: Genetica Y Technologia Ltda. Tel: 56-2-633 52 69 / www.genytec.cl

COLOMBIA/PANAMA: Bio Products, Inc. dba Subiotec Ltda. Tel: 561-434-2121 / www.bioproducts.net

CZECH REPUBLIC: Biotech A.s. Toll Free: +420 800124683 www.biotech.cz

DENMARK: Medinova Scientific A/s Tel: +45 39 56 20 00 / www.medinova.dk ESTONIA/LATVIA/LITHUANIA: In Vitro Eesti Ou Tel: +372 630 65 20 / www.invitro.ee

FINLAND: Finnzymes Oy Tel: +358 9 2472 3010 / www.finnzymes.fi

FRANCE: Ozyme Tel: (1) 34 60 24 24 / www.ozyme.fr

GERMANY/AUSTRIA: New England Biolabs GmbH Tel: +49/ (0) 69 305 23140 / www.neb-online.de

GREECE: Bioline Scientific Douros Bro – E. Demagos O.e. Tel: 210-5226547 / E-mail: demagos@hol.gr

Hong Kong: Gene Company Limited Tel: (852) 2896-6283 / www.genehk.com

HUNGARY: Kvalitex Kft. Tel: (36) 1340-4700 / www.kvalitex.hu

ICELAND: Groco ehf Tel: +354-568-8533 / www.groco.is

INDIA: Labmate (Asia) Pvt Ltd. Tel: 44 222 000 66 / www.labmateasia.com

INDONESIA: P T Research Biolabs Tel: 62-21-5859365 E-mail: Indonesia@researchbiolabs.com

REPUBLIC OF IRELAND: Isis Ltd. Tel: (1) 286 7777 / www.isisco.ie ISRAEL: Eldan Electronic Instruments Co., Ltd Tel: (3) 9371132 / www.eldan.biz

ITALY: Euroclone Toll Free: 800-315911 / www.euroclonegroup.it

KOREA: Koram Biotech Corp. Tel: (02) 556-0311 / www.korambiotech.com

MALAYSIA: Research Biolabs Sdn Bhd Tel: 60358829588 / www.researchbiolabs.com

MEXICO: Quimica Valaner S.a. De C.v. Tel: 5525-5725 / www.valaner.com

THE NETHERLANDS: BIOKÉ Tel: +31 (0)71 568 1000 / www.bioke.com

NEW ZEALAND: Biolab Ltd Tel: (09) 980-6700 / www.biolabgroup.com

NORWAY: Medprobe As Tel: 23 32 73 80 / www.medprobe.com

PORTUGAL: Izasa Lisbon Tel: (21) 424 73 64 / www.izasa.es

SINGAPORE: Research Biolabs Pte Ltd Tel: +65 6777 5366 / www.researchbiolabs.com

SLOVAK REPUBLIC: Biotech S.r.o. Tel: (07) 54774488 / E-mail: biotech@biotech.cz SOUTH AFRICA: Laboratory Specialist Services cc Tel: +27 (0)21 7887755 / www.lss.co.za

SPAIN: Izasa, S.a. Tel: (34) 902 20 30 70 / www.izasa.es

SWEDEN: In Vitro Sweden Ab Tel: (08) 30 60 10 / www.invitro.se

SWITZERLAND: Bioconcept Tel: (061) 486 80 80 / www.bioconcept.ch

TAIWAN: Taigen Bioscience Corp. Tel: (02) 28802913 / www.taigen.com

THAILAND: Theera Trading Co. Ltd. Tel: (02) 412-5672 / www.theetrad.com

TURKEY: Sacem Hayat Teknolojileri Tel: +90 312 231 52 72 / www.sacem.com.tr

UNITED KINGDOM: New England Biolabs (UK) Ltd. Toll Free: 0800 318486 / www.neb.uk.com

URUGUAY: Buro Ltda Tel: (5982) 7074318 / E-mail: buro@st.com.uy

VENEZUELA: Bioproducts, Inc. DBA Corporacion Internacional De Tecnologia, S.a. (Corpointer) Tel: 561-434-2121 / www.bioproducts.net

SPrinted in the USA on recycled paper (25% post-consumer waste fiber) using vegetable inks and processed chlorine free.