Quantitative profiling of signaling pathways using immunoathnity purification and LC-MS/MS
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Introduction

T : ; " : : : In-depth analysis of PI3K/Akt and associated signaling pathways. Figure 5: Akt/PI3K Pathway mouse tissue profiling.
Proteomic analysis of post-translationally modified peptides has traditionally employed methods that broadly sample the proteome but are unfocused with Monitoring more than 1 5 000 phosphorylation sites on over 400 critical signaling proteins. l%é Hirarchical clustering of relative intensiies for mouse liver
ites identifi i ini identificati itati i ifi : Figure 4: Akt/PI3K Pathway - . !
rgspect to the s@es |dent|f|gd. We have devglopeq a novel immunoaffinity metho.d for |dent|f|cgt|on and quant|tatl|on.of post—tran§lat|onally modified pep- IPA® - Molecular Mechanisms of Cancer PR, PR @@@@@ Tz | g _ / ! y — prain, and embryo. Each row represents a different validated
tides from proteins that reside in the same signaling pathway or pathways, allowing a global view of pathway activation from a single LC-MS/MS run. Ny - D o interaction map of validated targets. | 1 AKY/PISK pathway peptide. The maximum intensity across the
Six different antibody reagents have been prepared that focus on diverse signaling areas: Ser/Thr Kinase activity, Tyr Kinase activity, PI3K/Akt signaling, e o eane @ H-; _“- O (=gl three tissues was set to 1 and the other two intensities normal-
C.eII Cycle/DNA Damage signaling, Apoptotic/Autophagontic pathways, and a Multipathway reagent for det.ect?o.n of critical signaling proteing across many & @ @ S = “ —T ized to the max. Blue indicates higher intensity. Selected kinase
different pathways. Reagents were validated using human and mouse samples with a variety of treatments (inhibitors, growth factors, etc.). This technology = @' , — ﬁ . . . neptides are shown in detail with accompanying western blots.
is broadly applicable to any experimental system in which quantitative profiling of specific critical signaling molecules is desirable. ' @ 5 o & iy Rpcomss 2 9 6 u nique sites on — | Geri)
e :-- © o —_—
L W e o ® 1 0 5 . Aktl (Thr308)
) o Akl (SerdTA
PTMScan® Direct Method e Va8 o proteins e
3 Akt (The309
@ @' \ Trma uu:seﬂ-m.
R e T STRING Expamentsd Akl (Serd 74/Serd7H)
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PhosphoScan® method (Rush et al. 2005) developed at Cell Signaling Technology. PTMScan Direct Reagents are validated using mixtures of g g g gg g ": :“ gg STAING Datatase AKLY (Serd72/Serd76)

pervanadate-treated human cancer cell lines digested with trypsin. Peptides are desalted over C18 columns and immunoprecipitated with either
the PTMScan Direct reagent or empty Protein G beads. Immunoprecipitated peptide mixtures are analyzed by LC-MS/MS and relative quantitation

is performed. Validated peptides meet several strict criteria; they are targeted by the reagent or are homologous to a target, they must pass score RS & s i = DNA D am a e/( :ell ( : C].e Hela -/+ UV DAMAGE Fold Change | Protein | ,
. . . . . N . . ‘ . GBP)CRINTORIE <\ /7 W, 7 SHADA | o By oG, . UV i Cantral Hame Site | Peptide | Max Tntensity
filtering (Lundgren et al. 2009) and signal intensity thresholds, and they must be present in higher abundance in the PTMScan Direct reagent : ; - | ;@;b = LR Xy . g y e : e 3 QAGIIQALQNLGLCHILSVYLK pomr
. T . . T ¢ — s (196 ‘\AB\;‘J e § o s 7 % T o o . ° e g e ————— 1 1 e ) | ot
immunoprecipitation than the empty Protein G beads immunoprecipitation (Stokes et al. 2012). : & - SN xﬁ\\& ’ ' \ g * A comprehensive view of the DNA damage response T 1] - :TT: | §1981 ﬂwmjfﬁs: QSTTISSLSER | ;u;?:agu
‘ D\ A AREAS, > N\ v S0 . - g | = (YIVLE | /
‘ lemy—@r \ e ™\ 8 TR \f / PR ‘\e\\ e > 1 ° Tk i 8 ATR §a2a MEESMSENEEIQCQTQQENLSSNSL 43,724
° b ; o o= Tswor L ; = - (Daxy) T o o (o D D R P @ ° DA DA . I = r i — r §
- H-[',T;ﬂﬁ‘mﬂug[;luminnm} ey | 2 j on /@ \;‘““‘“" f“f = ° MepahkecnmEnetisn Maepliceon Flgure 6: DNA DamaQE/CEH Cvc|e = 1 : i & 3 Cnk1 4 o .F"HQLH"LG'"!V""'-HG'G“““ L 48,715
. MKN-45 (gastric carcinoma) bt — . (A e s M W ek e o e . . . ' | ' g & it 5317 [SSETOPErR | G353
Wash Resin/Elute Peptides R R R T . e —, interaction map of validated lal‘gets. : : B ' 1 " =" TR §345 |LVQGISFS*QPTCPOHMSLLNSQLLE 1,840,956
= A-549 {lung adenocarcinoma) oy oSy AR () - R 8 e oy . = s B Chid | - (FTTEEALRHFWLODEDM# K | 7,865,595
® o Hela [corvical adenocarcinoma) | NI - — e 3 : L=~ S S . JILGETS LMER ...1,010,005
NCI-H1299 [non-small cell lung cancer| ilh““.lll LG-MS/MS : o S = : = by Y - 5 INKL; INKI | G183, 5185; §221, §223  TAGTSFMeMT*PY*WTR | 8,543,090
- : . . B =L . Sy 3 - £ K2 | §183, 5185 | TACTNFMMET*PY*WVTR | 15,427,858
: : - = o 7 = 2 63 [ i T ' § plS-aighs | §180,§182  HTDDEMTGY*VATR | 18,211,944
Pervanadate l . R Tt p— [@ *.I e L = llnlque SlteS OI'I == 21 l " pI8-gamma §1B3, §185 QADSEMET*GY*VVTR 1,421, 705
t : - b E:-..- : ;

Figure 7: DNA Damage/Cell Cycle profiling of response to
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Gt PTMScan® Direct is a recently published method that allows identification and quantification of hundreds of peptides 1. Stokes, M.P. et al. (2012) Mol. Cell Proteomics 11, 187-201.
: : . L . v from selected protein types or signaling pathways. This approach allows focus on proteins of interest instead of the 2. Rush, J. et al. (2005) Nat. Biotechnol. 23, 94-101.
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LEEIEE 93116 QEBTELE 1T i 1 e e Orine TGyl i el e L g i Ceniles S0 es PO R B 31 T random sampling of peptides that occurs in traditional data-dependent proteomic analysis. PTMScan® Direct is widely 3. Lundgren, D.H. et al. (2009) Curr. Protoc. Bioinformatics 13, 13.3.1-13.3.21.
(>0.700) from experimental, database, and text mining lines of evidence. Interactions were also defined from the substrate search page of applicable in drug development and discovery, as well as in any application where monitoring of known signaling 4. Stokes, M.P. et al. (2012) Int. J. Mol. Sci. 14, 286-307.

PhosphoSitePlus® (www.phosphosite.org). Node colors and shapes denote different protein classes. Edge color denotes interaction type. Figure 3: Ser/Thr Kinase and Tyr Kinase targets mapped onto the human kinome tree. Yellow highlighting indicates kinases for which pathways is desired.
peptides are identified using the reagents. Tyr Kinase coverage is shown in the inset (“TK").
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