Apoptosis Antibody Sampler Kit

✓ 1 Kit (8 x 20 µl)

For Research Use Only. Not For Use In Diagnostic Procedures.

Products Included

<table>
<thead>
<tr>
<th>Product #</th>
<th>Quantity</th>
<th>Mol. Wt.</th>
<th>Isotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaved Caspase-3 (Asp175) (SA1E) Rabbit mAb</td>
<td>9664</td>
<td>20 µl</td>
<td>17, 19 kDa</td>
</tr>
<tr>
<td>Caspase-3 (8G10) Rabbit mAb</td>
<td>9665</td>
<td>20 µl</td>
<td>17, 19, 35 kDa</td>
</tr>
<tr>
<td>PARP Antibody</td>
<td>9542</td>
<td>20 µl</td>
<td>24, 89, 116 kDa</td>
</tr>
<tr>
<td>Cleaved PARP (Asp214) (D64E10) XP® Rabbit mAb</td>
<td>5625</td>
<td>20 µl</td>
<td>89 kDa</td>
</tr>
<tr>
<td>Caspase-9 (C9) Mouse mAb</td>
<td>9508</td>
<td>20 µl</td>
<td>47, 37, 35 kDa (H), 51, 39, 37 kDa (R,M)</td>
</tr>
<tr>
<td>Cleaved Caspase-9 (Asp330) (D2D4) Rabbit mAb</td>
<td>7237</td>
<td>20 µl</td>
<td>37 kDa</td>
</tr>
<tr>
<td>Caspase-7 (D2Q3L) Rabbit mAb</td>
<td>12827</td>
<td>20 µl</td>
<td>20, 35 kDa</td>
</tr>
<tr>
<td>Cleaved Caspase-7 (Asp198) (D6H1) Rabbit mAb</td>
<td>8438</td>
<td>20 µl</td>
<td>18 kDa</td>
</tr>
<tr>
<td>Anti-mouse IgG, HRP-linked antibody</td>
<td>7076</td>
<td>100 µl</td>
<td></td>
</tr>
<tr>
<td>Anti-rabbit IgG, HRP-linked Antibody</td>
<td>7074</td>
<td>100 µl</td>
<td></td>
</tr>
</tbody>
</table>

See www.cellsignal.com for individual component applications, species cross-reactivity, dilutions and additional application protocols.

Description: The Apoptosis Antibody Sampler Kit provides an economical means to evaluate the levels of inactive and active caspases. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: Apoptosis is a regulated physiological process leading to cell death. Caspases, a family of cysteine acid proteases, are central regulators of apoptosis. Initiator caspases (including 8, 9, 10 and 12) are closely coupled to proapoptotic signals. Once activated, these caspases cleave and activate downstream effector caspases (including 3, 6 and 7), which in tum cleave cytoskeletal and nuclear proteins like PARP, α-fodrin, DFF and lamin A, and induce apoptosis. Cytochrome c released from mitochondria is coupled to the activation of caspase-9, a key initiator caspase (1). Proapoptotic stimuli include the FasL, TNF-α, DNA damage and ER stress. Fas and TNF receptors activate caspases 8 and 10 (2), DNA damage leads to the activation of caspase-9 and ER stress leads to the calcium-mediated activation of caspase-12 (3). The inhibitor of apoptosis protein (IAP) family includes XIAP and survivin and functions by binding and inhibiting several caspases (4,5). Smac/Diablo, a mitochondrial protein, is released into the cytosol upon mitochondrial stress and competes with caspases for binding of IAPs. The interaction of Smac/Diablo with IAPs relieves the inhibitory effects of the IAPs on caspases (6).

Specificity/Sensitivity: Each antibody in the Apoptosis Antibody Sampler Kit detects endogenous levels of its respective target. Cleaved Caspase-3 (Asp175) (SA1E) Rabbit mAb, Cleaved Caspase-7 (Asp198) (D6H1) Rabbit mAb, Cleaved Caspase-9 (Asp330) (D2D4) Rabbit mAb, and Cleaved PARP (Asp214) (D64E10) XP® Rabbit mAb detect only the large cleaved fragments of their respective targets. Caspase-3 (8G10) Rabbit mAb, Caspase-7 (D2Q3L) Rabbit mAb, Caspase-9 (C9) Mouse mAb, and PARP Antibody detect both the full length and the large cleaved fragments of their respective targets.

Recommended Antibody Dilutions:

Western blotting 1:1000

Please visit www.cellsignal.com for validation data and a complete listing of recommended companion products.

Storage: Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at −20°C. Do not aliquot the antibody.

Source/Purification: Monoclonal and polyclonal antibodies are produced by immunizing animals with synthetic peptides corresponding to residues surrounding Pro158 of human caspase-7 protein, residues surrounding the proteolytic cleavage sites of human caspase-3, caspase-9 and PARP proteins, or with recombinant human caspase-9 protein. Polyclonal antibodies are purified by protein A and peptide affinity chromatography.

Background References:

Western Immunoblotting Protocol

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

1. 20X Phosphate Buffered Saline (PBS): (#9808) To prepare 1 L 1X PBS: add 50 ml 20X PBS to 950 ml dH2O, mix.
2. 10X Tris Buffered Saline (TBS): (#12498) To prepare 1 L 1X TBS: add 100 ml 10X to 900 ml dH2O, mix.
3. 1X SDS Sample Buffer: Blue Loading Pack (#7722) or Red Loading Pack (#7723)
4. 1X Tris-Glycine SDS Running Buffer: (#4050) To prepare 1 L 1X running buffer: add 100 ml 1X running buffer to 900 ml dH2O, mix.
5. 1X Tris-Glycine Transfer Buffer: (#12539) To prepare 1 L 1X transfer buffer: add 100 ml 1X transfer buffer to 200 ml methanol + 700 ml dH2O, mix.
6. 1X Tris Buffered Saline with Tween® 20 (TBST): (#9997) To prepare 1 L 1X TBST: add 100 ml 1X TBST to 900 ml dH2O, mix.
7. Nonfat Dry Milk: (#9998)
8. Blocking Buffer: 1X TBST with 5% w/v nonfat dry milk; for 150 ml, add 7.5 g nonfat dry milk to 150 ml 1X TBST and mix well.
9. Wash Buffer: (#9997) 1X TBST
10. Bovine Serum Albumin (BSA): (#9999)
11. Primary Antibody Dilution Buffer: 1X TBST with 5% BSA or 5% nonfat dry milk as indicated on primary antibody datasheet; for 20 ml, add 1.0 g BSA or nonfat dry milk to 20 ml 1X TBST and mix well.
13. Prestained Protein Marker, Broad Range (Premixed Format): (#7720)
15. Blotting Membrane and Paper: (#7727)
16. Detection Reactant: LumIGLO® chemiluminescent reagent and peroxide (#7003) or SignalFire™ ECL Reagent (#6883)

B. Protein Blotting

A general protocol for sample preparation.

1. Treat cells by adding fresh media containing regulator for desired time.
2. Aspirate media from cultures; wash cells with 1X PBS; aspirate.
3. Lyse cells by adding 1X SDS sample buffer (100 µl per well of 6-well plate or 500 µl for a 10 cm diameter plate). Immediately acrate the cells off the plate and transfer the extract to a microcentrifuge tube. Keep on ice.
4. Sonicate for 10–15 sec to complete cell lysis and shear DNA (to reduce sample viscosity).
5. Heat a 20 µl sample to 95–100°C for 5 min; cool on ice.
6. Microcentrifuge for 5 min.
7. Load 20 µl onto SDS-PAGE gel (10 cm x 10 cm). NOTE: Loading of prestained molecular weight markers (#7722, 10 µl/lane) to determine electrophoresis and biotinylated protein ladder (#7727, 10 µl/lane) to determine molecular weights are recommended.
8. Electrotransfer to nitrocellulose membrane (#12369).

C. Membrane Blocking and Antibody Incubations

NOTE: Volumes are for 10 cm x 10 cm (100 cm²) of membrane; for different sized membranes, adjust volumes accordingly.

I. Membrane Blocking
1. (Optional) After transfer, wash nitrocellulose membrane with 25 ml TBS for 5 min at room temperature.
2. Incubate membrane in 25 ml of blocking buffer for 1 hr at room temperature.
3. Wash three times for 5 min each with 15 ml of TBS.

II. Primary Antibody Incubation
1. Incubate membrane and primary antibody (at the appropriate dilution and diluent as recommended in the product datasheet) in 10 ml primary antibody dilution buffer with gentle agitation overnight at 4°C.
2. Wash three times for 5 min each with 15 ml of TBS.
3. Incubate membrane with the species appropriate HRP-conjugated secondary antibody (#7074 or #7076 at 1:2000) and anti-biotin, HRP-linked Antibody (#7075 at 1:1000–1:3000) to detect biotinylated protein markers in 10 ml of blocking buffer with gentle agitation for 1 hr at room temperature.
4. Wash three times for 5 min each with 15 ml of TBS.
5. Proceed with detection (Section D).

D. Detection of Proteins

1. Incubate membrane with 10 ml LumiGLO® 0.5 ml 20X LumiGLO® #7003, 0.5 ml 20X peroxide, and 9.0 ml purified water) or 10 ml SignalFire™ #6883 (5 ml Reagent A, 5 ml Reagent B) with gentle agitation for 1 min at room temperature.
2. Drain membrane of excess developing solution (do not let dry), wrap in plastic wrap and expose to x-ray film. An initial 10 sec exposure should indicate the proper exposure time.

NOTE: Due to the kinetics of the detection reaction, signal is most intense immediately following incubation and declines over the following 2 hr.