

mpleChIP $^{\otimes}$ and Cell Signaling Technology $^{\otimes}$ are trademarks of Cell Signaling Technology, Inc.

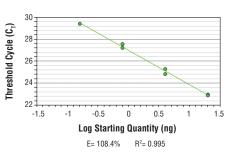
2012 Cell Signaling Technology, Inc.

0

Applications Kev:

SimpleChIP[®] Human pS2 Promoter Primers

500 μl (250 PCR reactions)


Orders = 877-616-CELL (2355) orders@cellsignal.com Support = 877-678-TECH (8324) info@cellsignal.com Web = www.cellsignal.com

rev. 06/28/17

For Research Use Only. Not For Use In Diagnostic Procedures.

Applications	Species Cross-Reactivity	Primer Anneal/Extension	PCR Product Length
ChIP	н	65°C	96 bp

Description: SimpleChIP[®] Human pS2 Promoter Primers contain a mix of forward and reverse PCR primers that are specific to a region of the human pS2 promoter. These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitation (ChIP). Primers have been optimized for use in SYBR[®] Green quantitative real-time PCR and have been tested in conjunction with SimpleChIP[®] Enzymatic Chromatin IP Kits #9002 and #9003 and ChIP-validated antibodies from Cell Signaling Technology[®]. pS2, also known as TFF1, is part of the trefoil family, which consists of secretory proteins found in gastrointestinal mucosa. The pS2 promoter is an estrogen-responsive gene researchers have shown to be active in many breast cancer cell lines.

SimpleChIP® Human pS2 Promoter Primers were tested on DNA isolated from cross-linked cells using the SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003. Real-time PCR was performed in duplicate on a serial dilution of 2% total input DNA (20 ng, 4 ng, 0.8 ng, and 0.16 ng) using a real-time PCR detection system and SYBR® Green reaction mix. The PCR amplification efficiency (E) and correlation coefficient (R^o) were calculated based on the corresponding threshold cycle (C₇) of each dilution sample during 40 cycles of real-time PCR (95°C denaturation for 15 sec, 65°C anneal/extension for 60 sec).

Storage: Supplied in nuclease-free water at a concentration of $5 \,\mu$ M (each primer is at a final concentration of $5 \,\mu$ M). Store at -20°C.

Directions for Use:

1. Label the appropriate number of PCR tubes or PCR plates compatible with the model of real-time PCR machine to be used. PCR reactions should be performed in duplicate and should include a tube with no DNA to control for contamination, and a serial dilution of a 2% total input chromatin DNA (undiluted, 1:5, 1:25, 1:125), which is used to create a standard curve and determine amplification efficiency.

2. Add 2 μl of the appropriate ChIP DNA sample to each tube or well of the PCR plate.

3. Prepare a master PCR reaction mix as described below. Add enough reagents for two extra reactions to account for loss of volume. Add 18 μ l of the master PCR reaction mix to each PCR reaction tube or well of the PCR plate.

Reagent	Volume for 1 PCR Reaction (20) µI)
Nuclease-free H ₂ O		6μl
5 µM SimpleChĨP® I	Primers	2 µl
2X SYBR® Green Re	action Mix	10 µl

4. Start the following PCR reaction program:

- a. Initial Denaturation: 95°C for 3 min.
- b. Denaturation: 95°C for 15 sec.
- c. Anneal and Extension: Primer-specific temp. for 60 sec.
- d. Repeat steps b and c for a total of 40 cycles.

5. Analyze quantitative PCR results using software provided with the real-time PCR machine.

900 800 700 600 d(RFU)/dT 500 400 300 200 100 0 55 60 65 70 75 80 85 90 95 Temperature (°C)

PCR product melting curves were obtained for real-time PCR reactions performed using SimpleChIP[®] Human pS2 Promoter Primers. Data is shown for both duplicate PCR reactions using 20 ng of total DNA. The melt curve consists of 80 melt cycles, starting at 55°C with increments of 0.5°C per cycle. Each peak is formed from the degradation of a single PCR product.

 $\mathsf{SYBR}^{\circledast}$ Green is a registered trademark of Molecular Probes, Inc.

IP-Immunoprecipitation IHC-Immunohistochemistry ChIP-Chromatin Immunoprecipitation IF-Immunofluorescence F-Flow cytometry E-P-ELISA-Peolide

Species Cross-Reactivity Key: H—human M—mouse R—rat Hm—hamster

W-Western

Dg—dog Pg—pig Sc—S. cerevisiae Ce—C. elegans Hr—horse

ster Mk—monkey Mi—mink C—chicken Dm—D. melanogaster X—Xenopus Z—zebrafish B—bovine

All-all species expected

Species enclosed in parentheses are predicted to react based on 100% homology