BATF (D7C5) Rabbit mAb

Applications	Species Cross-Reactivity	Molecular Wt.	Isotype	IgG**
W, IP, IF-IC, F | H, M | 15 kDa | Rabbit |

Background: Basic leucine zipper transcriptional factor ATF-like (BATF) is a basic leucine zipper (bZIP) transcription factor and is part of the AP-1/ATF family that forms inhibitory dimers with members of the Jun family (1-3). Expression of BATF is largely restricted with highest levels found in mature T cells, and it is induced in B cells following immune responses including viral infection (1,2). BATF expression is also induced by IL-6 via a Stat3-dependent mechanism (4). BATF plays an important role in the differentiation of immune cell lineages (5-7). Studies of BATF-deficient mice have demonstrated a critical role for BATF in the formation of IL-17-expressing Th17 cells, in part, by regulating the expression of IL-17 (5,6). BATF knockouts are resistant to experimental autoimmune encephalomyelitis (EAE), consistent with the role of Th17 cells in this model (5). Additional studies have found that BATF is important in generating antibody class switching. BATF is required for the generation of follicular helper T cells (Thf), by regulating BCL6 and c-Maf (6,7). In B cells, BATF controls the expression of activation-induced cytidine deaminase (AID) and regulates class-switched antibody responses (7). Taken together, these studies suggest that BATF is a key regulator of distinct populations of immune cells.

Specificity/Sensitivity: BATF (D7C5) Rabbit mAb detects endogenous levels of total BATF protein.

Source/Purification: Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues near the carboxy terminus of human BATF protein.

Background References:

Recommended Antibody Dilutions:
- Western blotting: 1:1000
- Immunoprecipitation: 1:100
- Flow Cytometry: 1:400

IMPORTANT: For western blots, incubate membrane with diluted antibody in 5% w/v BSA, 1X TBS, 0.1% Tween® at 4°C with gentle shaking, overnight.
Flow cytometric analysis of HeLa (blue) and KARPAS-299 (green) cells using BATF (D7C5) Rabbit mAb. Cell Line Source: Dr Abraham Karpas at the University of Cambridge.