Phospho-EphA2 (Tyr772) Antibody

For Research Use Only. Not For Use In Diagnostic Procedures.

<table>
<thead>
<tr>
<th>Applications:</th>
<th>Reactivity:</th>
<th>Sensitivity:</th>
<th>MW (kDa):</th>
<th>Source:</th>
<th>UniProt ID:</th>
<th>Entrez-Gene Id:</th>
</tr>
</thead>
<tbody>
<tr>
<td>WB, IP</td>
<td>H</td>
<td>Endogenous</td>
<td>125</td>
<td>Rabbit</td>
<td>P29317</td>
<td>1969</td>
</tr>
</tbody>
</table>

Product Usage Information

Application
- Western Blotting: 1:1000
- Immunoprecipitation: 1:50

Storage
Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at -20°C. Do not aliquot the antibody.

Specificity / Sensitivity
Phospho-EphA2 (Tyr772) Antibody recognizes endogenous levels of EphA2 protein only when phosphorylated at Tyr772. This antibody may cross-react with other overexpressed phosphotyrosine proteins.

Species Reactivity:
Human

Species predicted to react based on 100% sequence homology:
Mouse, Rat, Monkey

Source / Purification
Polyclonal antibodies are produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Tyr772 of human EphA2. Antibodies are purified by protein A and peptide affinity chromatography.

Background
The Eph receptors are the largest known family of receptor tyrosine kinases (RTKs). They can be divided into two groups based on sequence similarity and on their preference for a subset of ligands: EphA receptors bind to a glycosylphosphatidylinositol-anchored ephrin A ligand; EphB receptors bind to ephrin B proteins that have a transmembrane and cytoplasmic domain (1,2). Research studies have shown that Eph receptors and ligands may be involved in many diseases including cancer (3). Both ephrin A and B ligands have dual functions. As RTK ligands, ephrins stimulate the kinase activity of Eph receptors and activate signaling pathways in receptor-expressing cells. The ephrin extracellular domain is sufficient for this function as long as it is clustered (4). The second function of ephrins has been described as "reverse signaling", whereby the cytoplasmic domain becomes tyrosine phosphorylated, allowing interactions with other proteins that may activate signaling pathways in the ligand-expressing cells (5). Various stimuli can induce tyrosine phosphorylation of ephrin B, including binding to EphB receptors, activation of Src kinase, and stimulation by PDGF and FGF (6). Tyr324 and Tyr327 have been identified as major phosphorylation sites of ephrin B1 in vivo (7).

Phosphorylation of Tyr772 on EphA2 was identified at Cell Signaling Technology (CST) using PhosphoScan®, a CST™ LC-MS/MS platform for phosphorylation site discovery (8). The phosphorylation is induced by ligand/receptor interaction (9).