

PKD3/PKC ν Kinase

5 μ g

Cell Signaling

TECHNOLOGY®

Orders ■ 877-616-CELL (2355)

orders@cellsignal.com

Support ■ 877-678-TECH (8324)

info@cellsignal.com

Web ■ www.cellsignal.com

new 05/06

This product is for *in vitro* research use only and is not intended for use in humans or animals.

Description: Purified recombinant full length human PKD3/PKC ν (Met1-Pro890) kinase, supplied as a GST fusion protein.

Background: PKC ν , also known as PKD3, is a member of the protein kinase C (PKC) family of serine/threonine kinases that play critical roles in the regulation of cellular differentiation and proliferation. PKC ν is composed of 890 amino acid residues and has 77.3% similarity to human PKC μ (PKC μ) and 77.4% similarity to mouse PKD (the mouse homolog of PKC μ) (1). The PKC ν mRNA is ubiquitously expressed in various tissues. PKC ν has two putative diacylglycerol binding C1 domains, suggesting that it may participate in a novel diacylglycerol-mediated signaling pathway (2). PKC ν is translocated to the plasma membrane and activated by the diacylglycerol mimic phorbol 12-myristate 13-acetate. PKC ν is an important physiologic target of the B-cell receptor (BCR) and exhibits robust activation after BCR engagement (2). GPCR agonists induce a rapid activation of PKC ν by a protein kinase C (PKC)-dependent pathway that leads to the phosphorylation of the activation loop of PKC ν . PKC ν is present both in the nucleus and cytoplasm and this distribution of PKC ν results from its continuous shuttling between both compartments by a mechanism that requires a nuclear import receptor and a competent CRM1-nuclear export pathway (3). Cell stimulation with the GPCR agonist neurotensin induces a rapid and reversible plasma membrane translocation of PKC ν that is PKC-dependent.

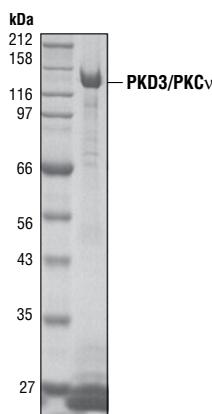


Figure 1. The purity of the GST-PKD3/PKC ν fusion protein was analyzed using SDS/PAGE followed by Coomassie stain.

Source/Purification: The GST-Kinase fusion protein was produced using a baculovirus expression system with a construct expressing human PKD3/PKC ν (Met1-Pro890) (GenBank Accession No. NM_005813) with an amino-terminal GST tag. The protein was purified by one-step affinity chromatography using glutathione-agarose.

Quality Control: The theoretical molecular weight of the GST-PKD3/PKC ν fusion protein is 126 kDa. The purified kinase was quality controlled for purity using SDS-PAGE followed by Coomassie stain [Fig.1]. PKD3/PKC ν kinase activity was determined using a radiometric assay [Fig.2].

Background References:

- (1) Hayashi, A. et al. (1999) *Biochim. Biophys. Acta.* 1450, 99–106.
- (2) Matthews, S.A. et al. (2003) *J. Biol. Chem.* 278, 9086–91.
- (3) Rey, O. et al. (2003) *J. Biol. Chem.* 278, 23773–85.

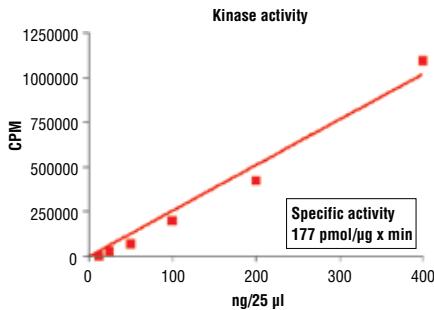


Figure 2. PKD3/PKC ν kinase activity was measured in a radiometric assay using the following reaction conditions: 4 mM MOPS, pH 7.2, 2.5 mM β -glycerophosphate, 1 mM EGTA, 0.4 mM EDTA, 4 mM $MgCl_2$, 0.05 mM DTT, 40 ng/ μ L BSA, 50 μ M ATP, Substrate: CREBtide 400 ng/ μ L and recombinant PKD3/PKC ν : variable.

Storage: Enzyme is supplied in 50 mM Tris-HCl, pH 7.5; 150 mM NaCl, 0.25 mM DTT, 0.1 mM EGTA, 0.1 mM EDTA, 0.1 mM PMSF, 25% glycerol, 7 mM glutathione. Store at -80°C.

Keep on ice during use.

Avoid repeated freeze-thaw cycles.

Protocol for PKD3/PKC ν Kinase Assay

Note: Lot-specific information for this kinase is provided on the enzyme vial. Optimal assay incubation times and enzyme concentrations must be determined empirically for each lot of kinase under specified conditions.

A Additional Solutions and Reagents (Not included)

1. Kinase Buffer (10X)

40 mM MOPS, pH 7.2
25 mM β -glycerophosphate
10 mM EGTA
4 mM EDTA
40 mM MgCl₂
0.5 mM DTT
400 ng/ μ L BSA

2. ATP (10 mM) #9804

3. 32 P- γ ATP

4. CREBtide (KRREIILSRRRPSYR) (1 μ g/ μ L)

B Suggested Protocol

1. Dilute 10 mM ATP with 3X assay buffer 1:40 to make 250 μ M ATP.
2. Dilute [32 p] ATP to 0.16 μ Ci/ μ L [32 p] ATP with 250 μ M ATP solution.
3. Transfer enzyme from -80°C to ice. Allow enzyme to thaw on ice.
4. Dilute PKD3/PKC ν kinase protein (100 ng/ μ L concentration) to 50 ng/ μ L with 1X assay buffer followed by 2-fold serial dilutions.
5. To start the reaction combine 10 μ L diluted PKD3/PKC ν kinase solution, 10 μ L CREBtide (1 μ g/ μ L) and 5 μ L 0.16 μ Ci/ μ L [32 p] ATP solution.

Final Assay Conditions

4 mM MOPS, pH 7.2
2.5 mM β -glycerophosphate
1 mM EGTA
0.4 mM EDTA
4 mM MgCl₂
0.05 mM DTT
40 ng/ μ L BSA
400 ng/ μ L CREBtide

6. After 15 minutes terminate reaction by spotting 20 μ L of the reaction mixture onto phosphocellulose P81 paper.
7. Air dry the P81 paper then wash with 1% phosphoric acid 3 times.
8. Transfer P81 paper to 4 ml scintillation tube then add 3 ml scintillation cocktail.
9. Count samples in a scintillation counter.

Cell Signaling Technology offers a full line of protein kinases, substrates, and antibody detection reagents for high throughput screening. Please direct all inquiries to: drugdiscovery@cellsignal.com.