

MAPKAPK-2 Kinase

5 µg

Cell Signaling

TECHNOLOGY®

Orders ■ 877-616-CELL (2355)
orders@cellsignal.com

Support ■ 877-678-TECH (8324)
info@cellsignal.com

Web ■ www.cellsignal.com

new 03/06

This product is for *in vitro* research use only and is not intended for use in humans or animals.

Description: Purified recombinant human MAPKAPK-2 (Phe46-His400) kinase, supplied as a GST fusion protein.

Background: In response to cytokines, stress and chemotactic factors, MAP kinase-activated protein kinase 2 (MAPKAPK-2) is rapidly phosphorylated and activated. It has been shown that MAPKAPK-2 is a direct target of p38 MAPK (1). Multiple residues of MAPKAPK-2 are phosphorylated *in vivo* in response to stress. However, only four of the residues: Thr25, Thr222, Ser272 and Thr334 are phosphorylated by p38 MAPK in an *in vitro* kinase assay (2). Phosphorylation at Thr222, Ser272 and Thr334 appears to be essential for the activity of MAPKAPK-2 (2). Thr25 is phosphorylated by p42 MAPK *in vitro*, but is not required for the activation of MAPKAPK-2 (2).

Source/Purification: The GST-Kinase fusion protein was produced using a baculovirus expression system with a construct expressing human MAPKAPK-2 (Phe46-His400) (GenBank Accession No. NM_032960) with an amino-terminal GST tag. The protein was purified by one-step affinity chromatography using glutathione-agarose.

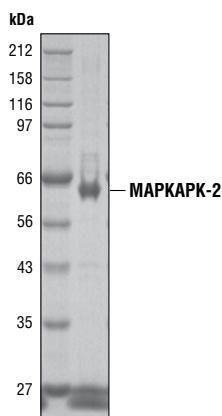


Figure 1. The purity of the GST-MAPKAPK-2 fusion protein was analyzed using SDS/PAGE followed by Coomassie stain.

Quality Control: The theoretical molecular weight of the GST-MAPKAPK-2 fusion protein is 68 kDa. The purified kinase was quality controlled for purity using SDS-PAGE followed by Coomassie stain [Fig.1]. MAPKAPK-2 kinase activity was determined using a radiometric assay [Fig.2].

Background References:

(1) Rouse, J. et al. (1994) *Cell* 78, 1027-1037.
(2) Ben-Levy, R. et al. (1995) *EMBO J.* 14, 5920-5930.

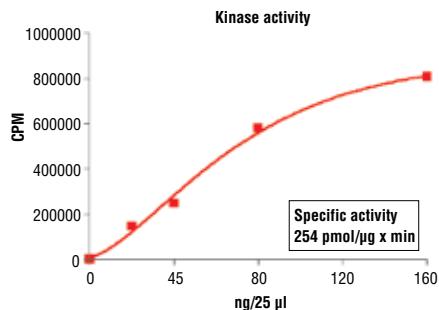


Figure 2. MAPKAPK-2 kinase activity was measured in a radiometric assay using the following reaction conditions: 4 mM MOPS, pH 7.2, 2.5 mM β -glycerophosphate, 1 mM EGTA, 0.4 mM EDTA, 4 mM $MgCl_2$, 0.05 mM DTT, 40 ng/ μ L BSA, 50 μ M ATP, Substrate: MAPKAPK-2 substrate peptide 400 ng/ μ L and recombinant MAPKAPK-2: variable.

Storage: Enzyme is supplied in 50 mM Tris-HCl, pH 7.5; 150 mM NaCl, 0.25 mM DTT, 0.1 mM EGTA, 0.1 mM EDTA, 0.1 mM PMSF, 25% glycerol, 7 mM glutathione. Store at -80°C.

Keep on ice during use.

Avoid repeated freeze-thaw cycles.

Protocol for MAPKAPK-2 Kinase Assay

Note: Lot-specific information for this kinase is provided on the enzyme vial. Optimal assay incubation times and enzyme concentrations must be determined empirically for each lot of kinase under specified conditions.

A Additional Solutions and Reagents (Not included)

1. Kinase Buffer (10X)

40 mM MOPS, pH 7.2
25 mM β -glycerophosphate
10 mM EGTA
4 mM EDTA
40 mM $MgCl_2$
0.5 mM DTT
6 μ M BSA

2. ATP (10 mM) #9804

3. ^{32}P - γ ATP

4. MAPKAPK-2 substrate peptide (KKLNRTLSVA) (1 μ g/ μ l)

B Suggested Protocol

1. Dilute 10 mM ATP with 3X assay buffer 1:40 to make 250 μ M ATP.
2. Dilute [^{32}P] ATP to 0.16 μ Ci/ μ l [^{32}P] ATP with 250 μ M ATP solution.
3. Transfer enzyme from -80°C to ice. Allow enzyme to thaw on ice.
4. Dilute MAPKAPK-2 protein (100 ng/ μ l concentration) to 20 ng/ μ l with 1X assay buffer followed by 2-fold serial dilutions.
5. To start the reaction combine 10 μ l diluted MAPKAPK-2 kinase solution, 10 μ l MAPKAPK-2 substrate peptide (1 μ g/ μ l) and 5 μ l 0.16 μ Ci/ μ l [^{32}P] ATP solution.

Final Assay Conditions

4 mM MOPS, pH 7.2
2.5 mM β -glycerophosphate
1 mM EGTA
0.4 mM EDTA
4 mM $MgCl_2$
0.05 mM DTT
40 ng/ μ l BSA
400 ng/ μ l MAPKAPK-2 substrate peptide

6. After 15 minutes terminate reaction by spotting 20 μ l of the reaction mixture onto phosphocellulose P81 paper.
7. Air dry the P81 paper then wash with 1% phosphoric acid 3 times.
8. Transfer P81 paper to 4 ml scintillation tube then add 3 ml scintillation cocktail.
9. Count samples in a scintillation counter.

Cell Signaling Technology offers a full line of protein kinases, substrates, and antibody detection reagents for high throughput screening. Please direct all inquiries to: drugdiscovery@cellsignal.com.