SimpleChIP® Human ADAM9 Intron 11 Primers

500 µl (250 PCR reactions)

For Research Use Only. Not For Use In Diagnostic Procedures.

<table>
<thead>
<tr>
<th>Applications</th>
<th>Species Cross-Reactivity*</th>
<th>Primer Anneal/Extension</th>
<th>PCR Product Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChIP</td>
<td>H</td>
<td>65°C</td>
<td>150 bp</td>
</tr>
</tbody>
</table>

Description: SimpleChIP® Human ADAM9 Intron 11 Primers contain a mix of forward and reverse PCR primers that are specific to intron 11 of the human ADAM metallopeptidase domain 9 (ADAM9). These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitation (ChIP). Primers have been optimized for use in SYBR® Green quantitative real-time PCR and have been tested in conjunction with SimpleChIP® Enzymatic Chromatin IP Kits #9002 and #9003 and ChIP-validated antibodies from Cell Signaling Technology®.

PCR product melting curves were obtained for real-time PCR reactions performed using SimpleChIP® Human ADAM9 Intron 11 Primers. Data is shown for both duplicate PCR reactions using 20 ng of total DNA. The melt curve consists of 80 melt cycles, starting at 55°C with increments of 0.5°C per cycle. Each peak is formed from the degradation of a single PCR product.

PCR product melting curves were obtained for real-time PCR reactions performed using SimpleChIP® Human ADAM9 Intron 11 Primers. Data is shown for both duplicate PCR reactions using 20 ng of total DNA. The melt curve consists of 80 melt cycles, starting at 55°C with increments of 0.5°C per cycle. Each peak is formed from the degradation of a single PCR product.

Storage: Supplied in nuclease-free water at a concentration of 5 µM (each primer is at a final concentration of 5 µM). Store at -20°C.

Directions for Use:
1. Label the appropriate number of PCR tubes or PCR plates compatible with the model of real-time PCR machine to be used. PCR reactions should be performed in duplicate and should include a tube with no DNA to control for contamination, and a serial dilution of a 2% total input chromatin DNA (undiluted, 1:5, 1:25, 1:125), which is used to create a standard curve and determine amplification efficiency.
2. Add 2 µl of the appropriate ChIP DNA sample to each tube or well of the PCR plate.
3. Prepare a master PCR reaction mix as described below. Add enough reagents for two extra reactions to account for loss of volume. Add 18 µl of the master PCR reaction mix to each PCR reaction tube or well of the PCR plate.
4. Start the following PCR reaction program:
 a. Initial Denaturation: 95°C for 3 min.
 b. Denaturation: 95°C for 15 sec.
 c. Anneal and Extension: Primer-specific temp. for 60 sec.
 d. Repeat steps b and c for a total of 40 cycles.
5. Analyze quantitative PCR results using software provided with the real-time PCR machine.

Reagent Volume for 1 PCR Reaction (20 µl)

<table>
<thead>
<tr>
<th>Reagent Volume</th>
<th>µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclease-free H2O</td>
<td>6 µl</td>
</tr>
<tr>
<td>5 µM SimpleChIP® Primers</td>
<td>2 µl</td>
</tr>
<tr>
<td>2X SYBR® Green Reaction Mix</td>
<td>10 µl</td>
</tr>
</tbody>
</table>

Threshold Cycle (Ct) vs Log Starting Quantity (ng)

| Log Starting Quantity (ng) | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
|----------------------------|
| E | 96.4% | R2 = 0.993 |

The melt curve consists of 80 melt cycles, starting at 55°C with increments of 0.5°C per cycle. Each peak is formed from the degradation of a single PCR product.

Applications: W—Western, IP—Immunoprecipitation, IHC—Immunohistochemistry, ChIP—Chromatin Immunoprecipitation, IF—Immunofluorescence, F—Flow cytometry, E-P—ELISA-Peptide

Species Cross-Reactivity: H—human, M—mouse, R—rat, Hm—hamster, Mk—monkey, Mi—mink, C—chicken, Dm—D. melanogaster, X—Xenopus, Z—zebrafish, B—bovine, Dg—dog, Pg—pig, Sc—S. cerevisiae, Ce—C. elegans, Hr—horse

All—all species expected. Species enclosed in parentheses are predicted to react based on 100% homology.

© 2016 Cell Signaling Technology, Inc.

SimpleChIP® and Cell Signaling Technology are trademarks of Cell Signaling Technology, Inc.

www.cellsignal.com