CD102/ICAM-2 (D7P2Q) Rabbit mAb

For Research Use Only. Not For Use In Diagnostic Procedures.

APPLICATIONS

<table>
<thead>
<tr>
<th>Application</th>
<th>Reactivity</th>
<th>Sensitivity</th>
<th>MW (kDa)</th>
<th>Source/Isotype</th>
<th>UniProt ID</th>
<th>Entrez-Gene ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>WB, IP, IHC-P, IF-IC, F</td>
<td>H</td>
<td>Endogenous</td>
<td>45, 55</td>
<td>Rabbit IgG</td>
<td>P13598</td>
<td>3384</td>
</tr>
</tbody>
</table>

Product Usage Information

Application

<table>
<thead>
<tr>
<th>Western Blotting</th>
<th>Dilution</th>
<th>1:1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunoprecipitation</td>
<td>1:50</td>
<td></td>
</tr>
<tr>
<td>Immunohistochemistry (Paraffin)</td>
<td>1:100</td>
<td></td>
</tr>
<tr>
<td>Immunofluorescence (Immunocytochemistry)</td>
<td>1:100</td>
<td></td>
</tr>
<tr>
<td>Flow Cytometry</td>
<td>1:100</td>
<td></td>
</tr>
</tbody>
</table>

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Specificity / Sensitivity

CD102/ICAM-2 (D7P2Q) Rabbit mAb recognizes endogenous levels of total CD102 (ICAM-2) protein.

Species Reactivity:

Human

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues near the amino terminus of human CD102 (ICAM-2) protein.

Background

Intercellular cell adhesion molecule-2 (CD102/ICAM-2) is a cell surface glycoprotein that belongs to the immunoglobulin superfamily (IgSF) of adhesion molecules. Like CD54/ICAM-1, CD102/ICAM-2 is a ligand that binds the leukocyte adhesion molecule LFA-1 (leukocyte function-associated antigen-1), which mediates intercellular interactions between immune cells and other cell types (1).

Expression of CD102/ICAM-2 has been shown to affect angiogenesis (2), cellular radioreistance (3) and anti-tumor immune response (4). Along with CD54/ICAM-1, CD102/ICAM-2 mediates T cell crawling and diapedesis across the blood-brain barrier (5), as well as T cell migration across the bronchial epithelium (6). CD102/ICAM-2 interaction with the actin cytoskeleton through α-actinin has been shown to limit the mobility on neuroblastoma cells (7), and this effect is dependent on glycosylation of CD102/ICAM-2 (8).