ANTIBODIES, KITS, AND REAGENTS FOR THE STUDY OF

Apoptosis Research
COVER IMAGE: Cytochrome c release from the mitochondria during apoptosis leads to amplification of the caspase signaling cascade via formation of the apoptosome. A radially-symmetric structure, the apoptosome assembles upon binding of cytochrome c (blue) to Apaf-1 (beige), followed by recruitment of caspase-9 (red). Once assembled, the apoptosome’s activated caspase-9 cleaves and activates cytosolic caspase-3 (red, floating) and rapidly amplifies the caspase cascade. This leads to the destruction of numerous intracellular targets by caspase-3 including the actin cytoskeleton (green).

Contents

4 Tools and Targets
6 Intrinsic Pathway Tools
8 Extrinsic Pathway Tools
10 Apoptosis and Cancer
14 Validation and Support
Apoptosis

Apoptosis is a tightly controlled pattern of cell death characterized by nuclear condensation, cell shrinkage, membrane blebbing, and DNA fragmentation. The central regulators of apoptosis are the caspases, a family of cysteine proteases that fall into two broad categories. The “initiator” caspases-2, -8, -9, -10, and -12 are closely coupled to upstream, pro-apoptotic signals and act by cleaving and activating the downstream “executioner” caspases-3, -6, and -7 that modify proteins ultimately responsible for programmed cell death. Targets such as PARP and lamin A/C are cleaved by executioner caspases and serve as markers of apoptosis.

There are two primary apoptotic pathways that lead to caspase activation: the intrinsic and extrinsic pathways. The intrinsic pathway is activated by cell stress, DNA damage, developmental cues, and withdrawal of survival factors. This pathway is regulated by the Bcl-2 family of proteins, which consists of pro-apoptotic (Bax, Bak, Bad, Bid, Puma, Bim, and Noxa) and anti-apoptotic (Bcl-2, Bcl-xl, Bcl-w, Mcl-1) factors. Bcl-2 family members localize to the mitochondria where they control mitochondrial permeability, release of cytochrome c, and activation of initiator caspase-9 followed by executioner caspase-3. Intrinsic apoptosis can be inhibited through signaling pathways that promote survival, such as the PI3K/Akt and MAPK pathways.

Caspases can also be activated through the extrinsic or death receptor pathway. The death receptors consist of members of the TNFR family (TNFR1/2, Fas, and DR3/4/5) and their associated ligands (TNF-α, FasL, TRAIL, TWEAK). Ligand binding induces receptor activation, leading to signaling through the adaptor proteins FADD and TRADD to activate the initiator caspase-8 and the executioner caspase-3. The death receptor pathway can also lead to cell survival through TNFR2-mediated signaling to NF-κB, which induces expression of pro-survival genes, Bcl-2 and FLIP.

A Trusted Research Partner

Cell Signaling Technology (CST) strives to be your research partner for the study of apoptosis. As scientists we understand the importance of using antibodies that consistently work each and every time. Our highly specific antibodies are directed against the most relevant targets in apoptosis and are painstakingly validated to work in their recommended applications, so you can feel confident in your results. In addition, we provide siRNA, chemical modulators, control cell extracts, and kits—all validated using the same rigorous quality standards—giving you the tools you need for every step of the experimental process. Optimal antibody dilutions and recommended buffers are predetermined for you, saving you the time, sample, and trouble of additional optimization steps. Protocols and troubleshooting guides for commonly used applications are available on our website to help you get reliable results in the shortest amount of time. If you experience a problem in the lab, the same expert scientist who produced and validated your antibody will respond to your email or phone call and help you, sharing their bench experience and data from their notebooks.
Tools and Targets

Products and Tools for Apoptosis Research

CST offers the highest possible quality antibodies and reagents for each stage of the experimental process.

Primary Antibodies

CST offers a broad range of highly specific primary antibodies to key targets in apoptosis signaling pathways. Currently, we offer more than 300 primary antibodies against over 150 protein targets, including phosphorylation site and cleavage-specific antibodies. Our portfolio is constantly expanding, so please check our website frequently for a complete, up-to-date product list.

Antibody Sampler Kits

Sampler kits allow for the simultaneous analysis of multiple nodes in a pathway of interest or modification sites within a protein of interest.

Assay Kits

Assess apoptosis using a CST assay kit, scale up your analysis in a 96-well format using PathScan® ELISA Kits (384-well plates are also available on a custom basis), or monitor multiple pathway nodes in parallel using sandwich assays in a slide-based array.

SignalSilence siRNA

Rigorously validated SignalSilence® siRNAs can be used to selectively reduce the expression of a protein of interest.

Chemical Modulators

Treat cells with a chemical modulator to induce apoptosis and examine effects on downstream signaling.

Experimental Controls

Control cell extracts, control proteins, blocking peptides, and isotype controls can help verify antibody specificity, critical for accurate data analysis.

Companion Products

Secondary antibodies, loading controls, buffers, dyes, chemical modulators, detection reagents, protease inhibitors, and peptide standards are available to support your protocol.

We’ve got it covered
Tools to Support Your Apoptosis Workflow

Apoptotic Stimuli
Treat cells with a chemical modulator to induce apoptosis

Cellular Readouts
Antibodies to key targets as cellular readouts for apoptosis

Experimental Controls
Control cell extracts and siRNAs to confirm target specificity

Assays Kits
Apoptosis Detection, ELISA, and Multi-Target Array Kits for experimental analysis

Staurosporine #9953: WB analysis of extracts from HeLa cells, untreated or Staurosporine-treated (3 hr), showing PARP cleavage as evidence of induction of apoptosis, using Cleaved PARP Antibody #9541 (upper) or PARP Antibody #9542 (lower).

Cleaved Caspase-3 (Asp175) (D3E9) Rabbit mAb (Alexa Fluor® 647 Conjugate) #9602: Confocal IF analysis of HeLa cells, untreated (upper) or treated with Staurosporine #9953 (1 μM, 4 hr, lower), using #9652 (blue pseudocolor). Actin filaments were labeled with Alexa Fluor® 488 Phalloidin #8878 (green). Red = Propidium Iodide (PI)/RNase Staining Solution #4087.

SignalSilence® Caspase-3 siRNA I (Mouse Specific) #6488 and SignalSilence® Caspase-3 siRNA II (Mouse Specific) #6501: WB analysis of extracts from NIH/3T3 cells, transfected with 100 nM SignalSilence® Control siRNA (Unconjugated) #6568 (-), #6488 (+), or #6501 (+), using Caspase-3 (8G10) Rabbit mAb #9665 (upper) or α-Tubulin (11H10) Rabbit mAb #2125 (lower). The caspase-3 (8G10) Rabbit mAb confirms silencing of Caspase-3 expression, while the α-Tubulin (11H10) Rabbit mAb is used as a loading control.

PathScan® Cleaved PARP (ASP214) Sandwich ELISA Kit #7262: The relationship between protein concentration of lysates from untreated and staurosporine (STO) treated HeLa cells and the absorbance at 450 nm is shown. HeLa cells (80% confluent) were treated with staurosporine (1 μM) for 3 hours. Absorbance at 450 nm is shown in the top figure, while the corresponding WB using Cleaved PARP Antibody #9548 is shown in the bottom figure.

Our total and modification-specific antibody collection provides comprehensive coverage of the apoptosis pathways.

www.cellsignal.com/apoptosis
The Bcl-2 family of proteins regulates apoptosis by controlling mitochondrial permeability. The anti-apoptotic proteins Bcl-2 and Bcl-xL reside in the outer mitochondrial wall and inhibit cytochrome c release. The pro-apoptotic Bcl-2 proteins Bad, BID, Bax, and Bim may reside in the cytosol but translocate to the mitochondria following death signaling, where they promote the release of cytochrome c. Bad translocates to mitochondria and forms a pro-apoptotic complex with Bcl-xL. This translocation is inhibited by survival factors that induce the phosphorylation of Bad, leading to its cytosolic sequestration. Cytosolic BID is cleaved by caspase-8 following signaling through Fas; its active fragment (tBID) translocates to mitochondria. Bax and Bim translocate to mitochondria in response to death stimuli, including survival factor withdrawal. Activated following DNA damage, p53 induces the transcription of Bax, Noxa, and Puma. Upon release from mitochondria, cytochrome c binds to Apaf-1 and forms an activation complex with caspase-9. Although the mechanism(s) regulating mitochondrial permeability and the release of cytochrome c during apoptosis is not fully understood, Bcl-xL, Bcl-2, and Bax may influence the voltage-dependent anion channel (VDAC), which may play a role in regulating cytochrome c release. HECTH9 is a DNA damage-activated E3 ubiquitin ligase for p53, and Mcl-1 is an anti-apoptotic member of the Bcl-2 family.

Select Reviews

Antibodies to key targets as cellular readouts

Bak (D4E4) Rabbit mAb #12105: Confocal IF analysis of OVCAR8 cells showing colocalization with mitochondria using #12105 (green) (A) and MitoTracker® Red CMXRos (Red) (B). Merged image (C). Blue pseudocolor = DRAQ® #4084 (fluorescent DNA dye).

Chemical modulators to induce apoptosis

Etoposide #2200: WB analysis of extracts from Jurkat cells, untreated (-) or Etoposide-treated (25 μM, overnight; +), using Cleaved PARP (Asp175) (D3E9) XP® Rabbit mAb #5625 (upper) and total PARP Antibody #9542 (lower).

SignalSilence® siRNA for knockdown studies

SignalSilence® Bcl-xL siRNA I #6362: WB analysis of extracts from HeLa cells, transfected with 100 nM SignalSilence® Control siRNA (Unconjugated) #6568 (-), #6569 (+), or SignalSilence® Bcl-xL siRNA I #6362 (+), or SignalSilence® Bcl-xL siRNA II #6363 (+), using Bcl-xL (54H6) Rabbit mAb #2764 (upper) or α-Tubulin (11H10) Rabbit mAb #2125 (lower). The Bcl-xL (54H6) Rabbit mAb confirms silencing of Bcl-xL expression, while the α-Tubulin (11H10) Rabbit mAb is used as a loading control.

Experimental controls for accurate data analysis

Caspase-3 Control Cell Extracts #9662: WB analysis of Jurkat cell extracts untreated or treated with cytochrome c in vitro, showing full length and/or cleaved caspase-3 (upper) and cleaved caspase-3 Asp175 (lower), using Caspase-3 Antibody #9662 and Cleaved Caspase-3 (Asp175) Antibody #9661.

PathScan® ELISA kits for experimental analysis

PathScan® Phospho-Bcl-2 (Ser70) Sandwich ELISA Kit #11874: Treatment of Jurkat cells with Paclitaxel stimulates phosphorylation of Bcl-2 at Ser70, as detected by #11874, but does not affect the levels of total Bcl-2 detected by PathScan® Total Bcl-2 Sandwich ELISA Kit #12030. Jurkat cells were untreated or treated with λ phosphatase or Paclitaxel #9807 (1 mM, 20 hr, 37°C). The absorbance readings at 450 nm are shown in the upper figure, while the corresponding WBs (lower) using Phospho-Bcl-2 (Ser70) (5H2) Rabbit mAb #2827 (left) or Bcl-2 (D55G8) Rabbit mAb (Human Specific) #4223 (right) are shown.

PathScan® Phospho-Bcl-2 (Ser70) Sandwich ELISA Kit includes:
- Bcl-2 (D24A9) Rabbit mAb #9239, Phospho-Bad (Ser112) (40A9) Rabbit mAb #5284,
- Bax (D2E11) Rabbit mAb #5023, Bk Antibody #4592, Bik Antibody #4592, Bim (C34C5) Rabbit mAb #2933, BID Antibody (Human Specific) #2002, Bak (D4E6) Rabbit mAb #12105, Puma (D30C10) Antibody #12450, Anti-rabbit IgG, HRP-linked Antibody #7074

Pro-Apoptosis Bcl-2 Family Antibody Sampler Kit #9942
Antibody sampler kits offer a convenient and economical means for the analysis of multiple nodes within a pathway of interest. For a complete listing of our Antibody Sampler Kits: www.cellsignal.com/abkits

www.cellsignal.com/apoptosis
Apoptosis can be induced through the activation of death receptors including Fas, TNFαR, DR3, DR4, and DR5 by their respective ligands. Death receptor ligands characteristically initiate signaling via receptor oligomerization, which in turn results in the recruitment of specialized adaptor proteins and activation of caspase cascades. Binding of FasL induces Fas trimerization, which recruits initiator caspase-8 via the adaptor protein FADD. Caspase-8 then oligomerizes and is activated via autocatalysis. Activated caspase-8 stimulates apoptosis via two parallel cascades: it can directly cleave and activate caspase-3, or alternatively, it can cleave Bid, a pro-apoptotic Bcl-2 family protein. Truncated Bid (tBid) translocates to mitochondria, inducing cytochrome c release, which sequentially activates caspase-9 and -3. TNF-α and DR-3L can deliver pro- or anti-apoptotic signals. TNF-αR and DR3 promote apoptosis via the adaptor proteins TRADD/FADD and the activation of caspase-8. Interaction of TNF-α with TNFoR may activate the NF-κB pathway via NIK/IKK. The activation of NF-κB induces the expression of pro-survival genes including Bcl-2 and FLIP, the latter can directly inhibit the activation of caspase-8. FasL and TNF-α may also activate JNK via ASK1/MKK7. Activation of JNK may lead to the inhibition of Bcl-2 by phosphorylation. In the absence of caspase activation, stimulation of death receptors can lead to the activation of an alternative programmed cell death pathway termed necroptosis.

Select Reviews
Assay kits to measure key cellular readouts

Chemical modulators to induce apoptosis

Human Fas Ligand/TNFSF6 (hFasL) #5452: Western blot analysis of extracts from Jurkat cells, untreated or treated with hFasL, for 3 hr, using Cleaved PARP (Asp214) Antibody (Human Specific) #9541 (upper) or PARP Antibody #9542 (lower).

signalSilence® siRNA for knockdown studies

SignalSilence® TNF-R1 siRNA I (Mouse Specific) #13369: WB analysis of extracts from L929 cells, transfected with 100 nM SignalSilence® Control siRNA (Unconjugated) #6568 (-), SignalSilence® TNF-R1 siRNA I (Mouse Specific) (+) or SignalSilence® TNF-R1 siRNA II (Mouse Specific) #13570 (+), using TNF-R1 (D3I7K) Rabbit mAb (Rodent Specific) #13377 (upper) or β-Actin (D6A8) Rabbit mAb #8457 (lower). The TNF-R1 (D3I7K) Rabbit mAb (Rodent Specific) confirms silencing of TNF-R1 expression, while the β-Actin (D6A8) Rabbit mAb is used as a loading control.

PathScan® Array kits for multiplex analysis

PathScan® Stress and Apoptosis Signaling Antibody Array Kit (Chemiluminescent Readout) #12856: HeLa cells were grown to 90% confluency and then either untreated (left panel) or treated with Human Tumor Necrosis Factor-α (hTNF-α) #8902 (100 ng/ml, 20 min; right panel). Cell extracts were prepared and analyzed using #12856. Images were acquired by briefly exposing the slide to standard chemiluminescent film.

Companion products to support your work

PathScan® Stress and Apoptosis Signaling Antibody Array Kit

- Fas (C18C12) Rabbit mAb #4233
- TNF-R1 (C25C1) Rabbit mAb #3736
- TNF-R2 Antibody #3254
- DRR (D4E9) XP® Rabbit mAb #8074
- FADD Antibody (Human Specific) #2782
- TRADD (7G8) Rabbit mAb #3684
- DcR3 Antibody #4758
- RIP (D94C12) XP® Rabbit mAb #3493
- Anti-rabbit IgG, HRP-linked Antibody #7074

Death Receptor Antibody Sampler Kit #8356

Explore our antibody sampler kits—convenient and economical ways to assay several nodes in a common signaling pathway. Visit our website to find over 15 sampler kits available for apoptosis research.

www.cellsignal.com/abkits
Resisting apoptosis is one of the six hallmark traits of cancer. Cancer cells have developed unique strategies for cell survival that involve both inhibition of pro-apoptotic factors combined with activation of anti-apoptotic factors. One of the primary pathways involved in cell survival is PI3K/Akt. Akt phosphorylates and inhibits several pro-apoptotic factors such as Bim, Bax, Bad, and FoxO1. Akt also activates the inhibitor of apoptosis protein XIAP and blocks p53-mediated apoptosis through stabilization of MDM2. Mutations that result in constitutive signaling through this pathway provide distinct proliferative and survival advantages for a cancer cell. For example, activating mutations in PI3K3C (a subunit of PI3K), and loss-of-function mutations in PTEN both upregulate Akt activity and are some of the most commonly mutated genes in cancer.

Growth factor signaling through MAPK Erk1/2 can inhibit apoptosis through phosphorylation of Bim at multiple sites, including Ser55, Ser65, and Ser73, which promotes its proteasomal degradation. In addition, signaling through Erk1/2 and PKC to p90RSK leads to phosphorylation and inhibition of Bad and increased expression of the anti-apoptotic factors Bcl-2 and Bcl-xL via CREB. Apoptosis can also be prevented through TNFR-mediated signaling to NF-κB, resulting in induction of XIAP and FLIP.

Select Reviews
Antibodies to key targets as cellular readouts

Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb #4060: IHC analysis of PTEN heterozygous mutant mouse endometrium using #4060. (Tissue section courtesy of Dr. Sabina Signoretti, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA.)

Bak (D4E4) Rabbit mAb #12105: IHC analysis of paraffin-embedded human colon carcinoma using #12105.

Cytochrome c (D18C7) Rabbit mAb #11940: IHC analysis of paraffin-embedded human breast carcinoma using Cytochrome c (D18C7) Rabbit mAb in the presence of control peptide (left) or antigen-specific blocking peptide (right).

Antibody sampler kits offer a convenient and economical means for the simultaneous analysis of multiple nodes within a pathway of interest.

#8678 Kit Includes:
- E-Cadherin (24E10) Rabbit mAb #3195, p53 (7F5) Rabbit mAb #2527, Stathmin Antibody #3352, BRCA1 Antibody #9010, Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb #4060, PTEN (138G6) Rabbit mAb #9559, Phospho-Estrogen Receptor α (Ser167) (D1A3) Rabbit mAb #5587, HER2/ErbB2 (D8F12) XP® Rabbit mAb #4290, Anti-rabbit IgG, HRP-linked Antibody #7074

For a complete listing of our Antibody Sampler Kits:
www.cellsignal.com/abkits

Assay kits to measure apoptosis

Caspase-3 Activity Assay Kit #5723: NIH/3T3 cells were treated with Staurosporine #9953 (5 μM, 5 hr) and then lysed in PathScan® Sandwich ELISA Lysis Buffer (1X) #7018 (supplied with kit). Various amounts of cell lysate were added to assay plates containing the substrate solution, and plates were incubated at 37°C in the dark. Relative fluorescent units (RFUs) were acquired at 1 and 4 hr.

Antibody sampler kits offer a convenient and economical means for the simultaneous analysis of multiple nodes within a pathway of interest.

#8678 Kit Includes:
- E-Cadherin (24E10) Rabbit mAb #3195, p53 (7F5) Rabbit mAb #2527, Stathmin Antibody #3352, BRCA1 Antibody #9010, Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb #4060, PTEN (138G6) Rabbit mAb #9559, Phospho-Estrogen Receptor α (Ser167) (D1A3) Rabbit mAb #5587, HER2/ErbB2 (D8F12) XP® Rabbit mAb #4290, Anti-rabbit IgG, HRP-linked Antibody #7074

For a complete listing of our Antibody Sampler Kits:
www.cellsignal.com/abkits

www.cellsignal.com/apoptosis
Cytotoxic stresses, such as ionizing radiation and hypoxia can cause single- or double-strand breaks to cellular DNA. The DNA damage response (DDR) is an important cellular mechanism that prevents the cell from replicating before the damage is repaired or the cell containing damaged DNA is eliminated. The p53 tumor suppressor protein is a transcriptional regulator that plays a major role in DDR. DNA damage induces phosphorylation of p53 at multiple sites by a number of upstream kinases including ATM, ATR, DNA-PK, and Chk2. Phosphorylation of p53 at Ser15 and Ser20 leads to a reduced interaction between p53 and its negative regulator, the oncoprotein MDM2. MDM2 inhibits p53 accumulation by targeting it for ubiquitination and proteasomal degradation. Activated p53 binds to target genes to induce a number of effector pathways including cell cycle arrest, DNA repair, senescence, or apoptosis. Studies have shown p53 to promote apoptosis through upregulation of the pro-apoptotic factors Puma and Noxa. Loss-of-function mutations in p53 or other elements of the DDR can result in cancer. In fact, up to 50% of human cancers may contain mutations in p53 or elements of the p53 signaling pathway.

Select Reviews

Antibodies to key targets as cellular readouts for the DNA Damage Response

PathScan® Multi-Target Kits for high content analysis

Disease Connection

Apoptosis is a tightly controlled process necessary for normal growth and development in multicellular organisms, playing an important role in tissue remodeling, tissue homeostasis, and wound repair. However, loss of properly regulated apoptosis can result in a host of disease states such as autoimmune diseases, neurodegenerative disorders, and cancer.

In the immune system, apoptosis plays an important role in immune tolerance and clearing T lymphocytes that recognize self-antigens. Mutations that interfere in this process can result in autoimmune disease. For example, studies have shown that loss-of-function mutations in the death receptor Fas have been linked to autoimmune lymphoproliferative syndrome (ALPS).

Faulty apoptotic signaling can also lead to neurodegenerative disorders. In Parkinson’s disease, premature apoptosis in dopaminergic neurons can be caused by loss-of-function mutations in PINK1, a protein that normally provides protection against cytochrome c release, as well as through upregulation of extrinsic pathway death receptors. In both cases, aberrant apoptotic signaling ultimately leads to neuronal cell death and the patient’s eventual cognitive decline.

The misregulation of apoptosis can be most acutely associated with cancer. Suppression of apoptosis is one of the key acquired capabilities necessary for malignant transformation to occur. Oncogenic driver mutations found throughout the intrinsic and extrinsic pathways promote cell survival and are commonly upregulated in various forms of cancer. Although the identification of driver mutations has lead to new therapeutic opportunities, overcoming mechanisms of resistance remains a continual challenge in the field of cancer biology.

Select Reviews

Validation and Support

A trusted partner at the bench

We validate each antibody in-house, using appropriate methods to verify specificity, sensitivity, and reproducibility, so you can be confident in your experimental results.

Does your antibody meet your expectations?

<table>
<thead>
<tr>
<th>CST ANTIBODIES</th>
<th>WE DO THE RELEVANT VALIDATION, SO YOU DON'T HAVE TO...</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>Appropriate signal observed in all recommended applications</td>
</tr>
<tr>
<td>✓</td>
<td>Clean band at appropriate molecular weight observed by western blot</td>
</tr>
<tr>
<td>✓</td>
<td>Specificity confirmed by one or more of the following:</td>
</tr>
<tr>
<td></td>
<td>- Appropriate subcellular localization</td>
</tr>
<tr>
<td></td>
<td>- Overexpression</td>
</tr>
<tr>
<td></td>
<td>- Activator or inhibitor treatment</td>
</tr>
<tr>
<td></td>
<td>- Positive and negative cell lines or tissues</td>
</tr>
<tr>
<td></td>
<td>- Phosphatase treatment</td>
</tr>
<tr>
<td></td>
<td>- RNA interference</td>
</tr>
<tr>
<td></td>
<td>- Peptide ELISA or array</td>
</tr>
<tr>
<td>✓</td>
<td>Specific reactivity confirmed in multiple biologically relevant species and cell lines</td>
</tr>
<tr>
<td>✓</td>
<td>Lot-to-lot consistency, calibrated for reliable results</td>
</tr>
<tr>
<td>✓</td>
<td>Proven protocols for results you can reproduce</td>
</tr>
</tbody>
</table>

Are you confident that your antibody is specific?

WB and IF analysis show that the other company’s antibody lacks specificity

Nanog (D2A3) XP® Rabbit mAb (Mouse Specific) #8822

Another Company’s Rabbit Polyclonal Antibody

Seemingly comparable IF staining intensity for Nanog in F9 cells.

Non-specific IF staining in Nanog-null NIH/3T3 cells, using the antibody from the other company.

In WB, The antibody from the other company recognizes multiple non-specific bands and demonstrates weak reactivity with correct bands.

Apoptosome Formation and Activation Video

Visit www.cellsignal.com/apoptosome to view this short 3D rendered animation illustrating caspase-mediated apoptosome formation and activation from release of cytochrome c by mitochondria to proteolytic degradation of cellular components such as actin filaments.

Apoptosis Signaling Pathways Poster

To request your copy of our Apoptosis Signaling Pathways poster, visit our resources page at: www.cellsignal.com/apoptosis.
At CST, providing exceptional customer service and technical support are top priorities. Our scientists work at the bench daily to produce and validate our antibodies, so they have hands-on experience and in-depth knowledge of each antibody’s performance. In the process, these same scientists generate valuable reference information that they use to answer your questions and help troubleshoot your experiment by phone or email.

www.cellsignal.com/support (USA & Europe)
www.cst-c.com.cn/support (China)
www.cstj.co.jp/support (Japan)
Cell Signaling Technology (CST) is a private, family-owned company, founded by scientists and dedicated to providing high quality research tools to the biomedical research community. Our 400 employees operate worldwide from our headquarters in Danvers, Massachusetts, and our offices in the Netherlands, China, and Japan. As scientists ourselves, we believe an antibody is only as good as the research it enables. For this reason, we are actively engaged in the development of technologies to facilitate signaling analysis and mechanistic cell biology research. And, the same scientists who produce and validate our primary antibodies are available to provide technical support for customers. In this way, we are able to supply customers with both the reagents and the information they need to achieve consistent, reliable results at the research bench.