mTOR Substrates Antibody Sampler Kit

For Research Use Only. Not For Use In Diagnostic Procedures.

<table>
<thead>
<tr>
<th>Products Included</th>
<th>Product #</th>
<th>Quantity</th>
<th>Mol. Wt.</th>
<th>Isotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phospho-mTOR (Ser2448) (D9C2) XP® Rabbit mAb</td>
<td>5536</td>
<td>20 µl</td>
<td>289 kDa</td>
<td>Rabbit IgG</td>
</tr>
<tr>
<td>mTOR (7C10) Rabbit mAb</td>
<td>2983</td>
<td>20 µl</td>
<td>289 kDa</td>
<td>Rabbit IgG</td>
</tr>
<tr>
<td>Phospho-p70 S6 Kinase (Thr389) (108D2) Rabbit mAb</td>
<td>9234</td>
<td>20 µl</td>
<td>70, 85 kDa</td>
<td>Rabbit IgG</td>
</tr>
<tr>
<td>Phospho-p70 S6 Kinase (Ser371) Antibody</td>
<td>9208</td>
<td>20 µl</td>
<td>70, 85 kDa</td>
<td>Rabbit IgG</td>
</tr>
<tr>
<td>Phospho-4E-BP1 (Thr37/46) (236B4) Rabbit mAb</td>
<td>2855</td>
<td>20 µl</td>
<td>15-20 kDa</td>
<td>Rabbit IgG</td>
</tr>
<tr>
<td>Anti-rabbit IgG, HRP-linked Antibody</td>
<td>7074</td>
<td>100 µl</td>
<td></td>
<td>Goat</td>
</tr>
</tbody>
</table>

See www.cellsignal.com for individual component applications, species cross-reactivity, dilutions and additional application protocols.

Description: The mTOR Substrates Antibody Sampler Kit provides an economical means to evaluate the signaling of mTOR to downstream substrates including p70 S6 Kinase and 4E-BP1. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: The mammalian target of rapamycin (mTOR, FRAP, RAPT) is a Ser/Thr protein kinase (1-3) that functions as an ATP and amino acid sensor to balance nutrient availability and cell growth (4,5). When sufficient nutrients are available, mTOR responds to a phosphatidic acid-mediated signal to transmit a positive signal to p70 S6 kinase and participate in the inactivation of the eIF4E inhibitor, 4E-BP1 (6). These events result in the translation of specific mRNA subpopulations. mTOR is phosphorylated at Ser2448 via the PI3 kinase/Akt signaling pathway and autophosphorylated at Ser2461 (7,8). mTOR plays a key role in cell growth and homoeostasis and may be abnormally regulated in tumors. For these reasons, mTOR is currently under investigation as a potential target for anti-cancer therapy (9).

The regulatory associated protein of mTOR (Raptor) interacts with mTOR to mediate mTOR signaling to downstream targets (10,11). Raptor binds to mTOR substrates, such as 4E-BP1 and p70 S6 kinase, through their TOS (TOR signaling) motifs and is required for mTOR-mediated substrate phosphorylation (12,13). Binding of the FKBP12-rapamycin complex to mTOR inhibits mTOR-raptor interaction, which suggests a mechanism for the inhibition of mTOR signaling by rapamycin (14). This mTOR-raptor interaction and its regulation by nutrients and/or rapamycin are dependent on a protein called GβL (15). Gbl is part of the rapamycin-insensitive complex between mTOR and rictor (rapamycin-insensitive companion of mTOR) and may mediate rictor-mTOR signaling to PKCz and other downstream targets (16). The rictor-mTOR complex has been identified as the previously elusive PKD2 responsible for the phosphorylation of Akt/PKB at Ser473, which is required for PKD1 phosphorylation of Akt/PKB at Thr308 and full activation of Akt/PKB (17).

Specificity/Sensitivity: Each antibody in the mTOR Substrates Antibody Sampler Kit detects endogenous levels of its target protein. While activation state antibodies typically detect only target proteins phosphorylated at indicated residues, some cross-reaction can occur with related proteins phosphorylated at analogous sites.

Source/Purification: Polyclonal antibodies are produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Ser2481 of human p70 S6 kinase. Polyclonal antibodies are purified by protein A and peptide affinity chromatography. Phospho-specific rabbit monoclonal antibodies are produced by immunizing animals with synthetic phosphopeptides corresponding to residues surrounding Thr389 of human p70 S6 kinase, Thr37 and Thr46 of mouse 4E-BP1 and the Ser2448 site of human mTOR. The mTOR (7C10) Monoclonal antibody is produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Ser2481 of human mTOR.

Background References:

Storage: Supplied in 10 mM sodium HEPES (pH 7.5, 150 mM NaCl, 100 µg/ml BSA and 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibodies.

Recommended Antibody Dilutions:
Western blotting 1:1000

Please visit www.cellsignal.com for validation data and a complete listing of recommended companion products.
Western Immunoblotting Protocol

For western blots, incubate membrane with diluted primary antibody in either 5% w/v BSA or nonfat dry milk, 1X TBS, 0.1% Tween® 20 at 4°C with gentle shaking, overnight. **NOTE:** Please refer to primary antibody datasheet or product webpage for recommended primary antibody dilution buffer and recommended antibody dilution.

A. Solutions and Reagents
NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

1. **20X Phosphate Buffered Saline (PBS):** (#9808) To prepare 1 L 1X PBS: add 50 ml 20X PBS to 950 ml dH₂O, mix.
2. **10X Tris Buffered Saline (TBS):** (#12498) To prepare 1 L 1X TBS: add 100 ml 10X to 900 ml dH₂O, mix.
3. **1X SDS Sample Buffer:** Blue Loading Pack (#7722) or Red Loading Pack (#7723). Prepare fresh 3X reducing loading buffer by adding 1/10 volume 30X DTT to 1 volume of 3X SDS loading buffer. Dilute to 1X with dH₂O.
4. **10X Tris-Glycine SDS Running Buffer:** (#4050) To prepare 1 L 1X running buffer: add 100 ml 1X running buffer to 900 ml dH₂O, mix.
5. **10X Tris-Glycine Transfer Buffer:** (#12539) To prepare 1 L 1X transfer buffer: add 100 ml 10X transfer buffer to 200 ml methanol + 700 ml dH₂O, mix.
6. **10X Tris Buffered Saline with Tween® 20 (TBST):** (#9997) To prepare 1 L 1X TBST: add 100 ml 10X TBST to 900 ml dH₂O, mix.
7. **Nonfat Dry Milk:** (#999)
8. **Blocking Buffer:** 1X TBST with 5% w/v nonfat dry milk; for 150 ml, add 7.5 g nonfat dry milk to 150 ml 1X TBST and mix well.
9. **Wash Buffer:** (#9997) 1X TBST
10. **Bovine Serum Albumin (BSA):** (#9998)
11. **Primary Antibody Dilution Buffer:** 1X TBST with 5% BSA or 5% nonfat dry milk as indicated on primary antibody datasheet; for 20 ml, add 1.0 g BSA or nonfat dry milk to 20 ml 1X TBST and mix well.
12. **Biotinylated Protein Ladder Detection Pack:** (#7727)
13. **Prestained Protein Marker, Broad Range (Premixed Format):** (#7720)
14. **Blotting Membrane and Paper:** (#12369)
15. **Secondary Antibody Conjugated to HRP:** (#7003) or (#7074); anti-mouse (#7076) at 1:2000
16. **Detection Reagent:** LumiGLO® chemiluminescent reagent and peroxide (#7003) or SignalFire™ ECL Reagent (#6883)

B. Protein Blotting
A general protocol for sample preparation.

1. Treat cells by adding fresh media containing regulator for desired time.
2. Aspirate media from cultures; wash cells with 1X PBS; aspirate.
3. Lyse cells by adding 1X SDS sample buffer (100 µl per well of 6-well plate or 500 µl for a 10 cm diameter plate). Immediately acrape the cells off the plate and transfer the extract to a microcentrifuge tube. Keep on ice.
4. Sonicate for 10–15 sec to complete cell lysis and shear DNA (to reduce sample viscosity).
5. Heat a 20 µl sample to 95–100°C for 5 min; cool on ice.
6. Microcentrifuge for 5 min.
7. Load 20 µl onto SDS-PAGE gel (10 cm x 10 cm). **NOTE:** Loading of prestained molecular weight markers (#7720, 10 µl/lane) to determine molecular weights are recommended.
8. Electrotransfer to nitrocellulose membrane (#12369).

C. Membrane Blocking and Antibody Incubations
NOTE: Volumes are for 10 cm x 10 cm (100 cm²) of membrane; for different sized membranes, adjust volumes accordingly.

I. **Membrane Blocking**
1. (Optional) After transfer, wash nitrocellulose membrane with 25 ml TBS for 5 min at room temperature.
2. Incubate membrane in 25 ml of blocking buffer for 1 hr at room temperature.
3. Wash three times for 5 min each with 15 ml of TBS.

II. **Primary Antibody Incubation**
1. Incubate membrane and primary antibody (at the appropriate dilution and diluent as recommended in the product datasheet) in 10 ml primary antibody dilution buffer with gentle agitation overnight at 4°C.
2. Wash three times for 5 min each with 15 ml of TBS.
3. Incubate membrane with the species appropriate HRP-conjugated secondary antibody (#7074 or #7076 at 1:2000) and anti-biotin, HRP-linked Antibody (#7075 at 1:1000–1:3000) to detect biotinylated protein markers in 10 ml of blocking buffer with gentle agitation for 1 hr at room temperature.
4. Wash three times for 5 min each with 15 ml of TBS.
5. Proceed with detection (Section D).

D. Detection of Proteins
1. Incubate membrane with 10 ml LumiGLO® (0.5 ml 20X LumiGLO® #7003, 0.5 ml 20X peroxide, and 9.0 ml purified water) or 10 ml SignalFire™ #6883 (5 ml Reagent A, 5 ml Reagent B) with gentle agitation for 1 min at room temperature.
2. Drain membrane of excess developing solution (do not let dry), wrap in plastic wrap and expose to x-ray film. An initial 10 sec exposure should indicate the proper exposure time.
NOTE: Due to the kinetics of the detection reaction, signal is most intense immediately following incubation and declines over the following 2 hr.