


| Description            | CST's PathScan <sup>®</sup> Phospho-p53 (Ser15) Sandwich ELISA Antibody Pair is offered as an economical alternative to our PathScan <sup>®</sup> Phospho-p53 (Ser15) Sandwich ELISA Kit #7365. Capture and Detection antibodies (100X stocks) and HRP-conjugated secondary antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The p53 Capture Antibody is coated in PBS overnight in a 96 well microplate. After blocking, cell lysates are added followed by a Phospho-p53 (Ser15) Detection Antibody and anti-Mouse IgG, HRP conjugated antibody. HRP substrate, TMB, is added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of phospho-p53 (Ser15) protein.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Background             | The p53 tumor suppressor protein plays a major role in cellular response to DNA damage and other genomic aberrations. Activation of p53 can lead to either cell cycle arrest and DNA repair or apoptosis (1). p53 is phosphorylated at multiple sites <i>in vivo</i> and by several different protein kinases <i>in vitro</i> (2,3). DNA damage induces phosphorylation of p53 at Ser15 and Ser20 and leads to a reduced interaction between p53 and its negative regulator, the oncoprotein MDM2 (4). MDM2 inhibits p53 accumulation by targeting it for ubiquitination and proteasomal degradation (5,6). p53 can be phosphorylated by ATM, ATR, and DNA-PK at Ser15 and Ser37. Phosphorylation impairs the ability of MDM2 to bind p53, promoting both the accumulation and activation of p53 in response to DNA damage (4,7). Chk2 and Chk1 can phosphorylate p53 at Ser20, enhancing its tetramerization, stability, and activity (8,9). p53 is phosphorylated at Ser392 <i>in vivo</i> (10,11) and by CAK <i>in vitro</i> (11). Phosphorylation of p53 at Ser392 is increased in human tumors (12) and has been reported to influence the growth suppressor function, DNA binding, and transcriptional activation of p53 (10,13,14). p53 is phosphorylated at Ser6 and Ser9 by CK1\delta and CK1ɛ both <i>in vitro</i> and <i>in vivo</i> (13,15). Phosphorylation of p53 at Ser46 regulates the ability of p53 to induce apoptosis (16). Acetylation of p53 is mediated by p300 and CBP acetyltransferases. Inhibition of deacetylation suppressing MDM2 from recruiting HDAC1 complex by p19 (ARF) stabilizes p53. Acetylation appears to play a positive role in the accumulation of p53 protein in stress response (17). Following DNA damage, human p53 becomes acetylated at Lys382 (Lys379 in mouse) <i>in vivo</i> to enhance p53-DNA binding (18). Deacetylation of p53 occurs through interaction with the SIRT1 protein, a deacetylase that may be involved in cellular aging and the DNA damage response (19). |
| Background References  | <ol> <li>Levine, A.J. (1997) <i>Cell</i> 88, 323-31.</li> <li>Meek, D.W. (1994) <i>Semin Cancer Biol</i> 5, 203-10.</li> <li>Milczarek, G.J. et al. (1997) <i>Life Sci</i> 60, 1-11.</li> <li>Shieh, S.Y. et al. (1997) <i>Cell</i> 91, 325-34.</li> <li>Chehab, N.H. et al. (1999) <i>Proc Natl Acad Sci U S A</i> 96, 13777-82.</li> <li>Honda, R. et al. (1997) <i>FEBS Lett</i> 420, 25-7.</li> <li>Tibbetts, R.S. et al. (1999) <i>Genes Dev</i> 13, 152-7.</li> <li>Shieh, S.Y. et al. (2000) <i>Science</i> 287, 1824-7.</li> <li>Hao, M. et al. (1996) <i>J Biol Chem</i> 271, 29380-5.</li> <li>Lu, H. et al. (1997) <i>Mol Cell Biol</i> 17, 5923-34.</li> <li>Ullrich, S.J. et al. (1993) <i>Proc Natl Acad Sci U S A</i> 90, 5954-8.</li> <li>Kohn, K.W. (1999) <i>Mol Biol Cell</i> 10, 2703-34.</li> <li>Lohrum, M. and Scheidtmann, K.H. (1996) <i>Oncogene</i> 13, 2527-39.</li> <li>Knippschild, U. et al. (1997) <i>Oncogene</i> 15, 1727-36.</li> <li>Oda, K. et al. (2000) <i>Cell</i> 102, 849-62.</li> <li>Ito, A. et al. (2001) <i>EMBO J</i> 20, 1331-40.</li> <li>Sakaguchi, K. et al. (2006) <i>Mol Cell Biol</i> 26, 28-38.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trademarks and Patents | Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

PathScan is a registered trademark of Cell Signaling Technology, Inc.

All other trademarks are the property of their respective owners. Visit cellsignal.com/trademarks for more information.

#### **Limited Uses**

Except as otherwise expressly agreed in a writing signed by a legally authorized representative of CST, the following terms apply to Products provided by CST, its affiliates or its distributors. Any Customer's terms and conditions that are in addition to, or different from, those contained herein, unless separately accepted in writing by a legally authorized representative of CST, are rejected and are of no force or effect.

Products are labeled with For Research Use Only or a similar labeling statement and have not been approved, cleared, or licensed by the FDA or other regulatory foreign or domestic entity, for any purpose. Customer shall not use any Product for any diagnostic or therapeutic purpose, or otherwise in any manner that conflicts with its labeling statement. Products sold or licensed by CST are provided for Customer as the end-user and solely for research and development uses. Any use of Product for diagnostic, prophylactic or therapeutic purposes, or any purchase of Product for resale (alone or as a component) or other commercial purpose, requires a separate license from CST. Customer shall (a) not sell, license, loan, donate or otherwise transfer or make available any Product to any third party, whether alone or in combination with other materials, or use the Products to manufacture any commercial products, (b) not copy, modify, reverse engineer, decompile, disassemble or otherwise attempt to discover the underlying structure or technology of the Products, or use the Products for the purpose of developing any products or services that would compete with CST products or services, (c) not alter or remove from the Products any trademarks, trade names, logos, patent or copyright notices or markings, (d) use the Products solely in accordance with CST Product Terms of Sale and any applicable documentation, and (e) comply with any license, terms of service or similar agreement with respect to any third party products or services used by Customer in connection with the Products.

# **#7846** PathScan<sup>®</sup> Phospho-p53 (Ser15) Sandwich ELISA Antibody Pair



# **ELISA Antibody Pair**

## A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

- 1. 20X Phosphate Buffered Saline (PBS): (#9808) To prepare 1 L 1X PBS: add 50 ml 20X PBS to 950 ml dH<sub>2</sub>O,
- mix. 2. Wash Buffer: 1X PBS/0.05% Tween<sup>®</sup> 20, (20X PBST #9809).
- 3. Blocking Buffer: 1X PBS/0.05% Tween<sup>®</sup> 20, 1% BSA.
- 4. **1X Cell Lysis Buffer**: 10X Cell Lysis Buffer (#9803): To prepare 10 ml of 1X Cell Lysis Buffer, add 1 ml of 10X Cell Lysis Buffer to 9 ml of dH<sub>2</sub>O, mix. Buffer can be stored at 4°C for short-term use (1–2 weeks).

Recommended: Add 1 mM phenylmethylsulfonyl fluoride (PMSF) (#8553) immediately before use.

- 5. Bovine Serum Albumin (BSA): (#9998).
- 6. TMB Substrate: (#7004).
- 7. STOP Solution: (#7002)

NOTE: Reagents should be made fresh daily.

## **B. Preparing Cell Lysates**

#### For adherent cells

- 1. Aspirate media when the culture reaches 80–90% confluence. Treat cells by adding fresh media containing regulator for desired time.
- 2. Remove media and rinse cells once with ice-cold 1X PBS.
- 3. Remove PBS and add 0.5 ml ice-cold 1X Cell Lysis Buffer plus 1 mM PMSF to each plate (10 cm diameter) and incubate the plate on ice for 5 min.
- 4. Scrape cells off the plate and transfer to an appropriate tube. Keep on ice.
- 5. Sonicate lysates on ice.
- 6. Microcentrifuge for 10 min (x14,000 rpm) at 4°C and transfer the supernatant to a new tube. The supernatant is the cell lysate. Store at -80°C in single-use aliquots.

### For suspension cells

- 1. Remove media by low speed centrifugation ( $\sim$ 1,200 rpm) when the culture reaches 0.5–1.0 x 10<sup>6</sup> viable cells/ml. Treat cells by adding fresh media containing regulator for desired time.
- 2. Collect cells by low speed centrifugation (~1,200 rpm) and wash once with 5-10 ml ice-cold 1X PBS.
- 3. Cells harvested from 50 ml of growth media can be lysed in 2.0 ml of 1X cell lysis buffer plus 1 mM PMSF.
- 4. Sonicate lysates on ice.
- 5. Microcentrifuge for 10 min (x14,000 rpm) at 4°C and transfer the supernatant to a new tube. The supernatant is the cell lysate. Store at -80°C in single-use aliquots.

## **C. Coating Procedure**

- 1. Rinse microplate with 200  $\mu$ l of dH<sub>2</sub>O, discard liquid. Blot on paper towel to make sure wells are dry.
- Dilute capture antibody 1:100 in 1X PBS. For a single 96 well plate, add 100 μl of capture antibody stock to 9.9 ml 1X PBS. Mix well and add 100 μl/well. Cover plate and incubate overnight at 4°C (17–20 hr).

#### 3. After overnight coating, gently uncover plate and wash wells:

- 1. Discard plate contents into a receptacle.
- 2. Wash four times with wash buffer, 200  $\mu$ l each time per well. For each wash, strike plates on fresh paper towels hard enough to remove the residual solution in each well, but do not allow wells to completely dry at any time.
- 3. Clean the underside of all wells with a lint-free tissue.
- 4. Block plates. Add 150  $\mu l$  of blocking buffer/well, cover plate, and incubate at 37°C for 2 hr.
- 5. After blocking, wash plate (Section C, Step 3). Plate is ready to use.

### D. Test Procedure

- 1. Lysates can be used undiluted or diluted in blocking buffer. 100  $\mu$ l of lysate is added per well. Cover plate and incubate at 37°C for 2 hr.
- 2. Wash plate (Section C, Step 3).
- 3. Dilute detection antibody 1:100 in blocking buffer. For a single 96 well plate, add 100  $\mu$ l of detection antibody Stock to 9.9 ml of blocking buffer. Mix well and add 100  $\mu$ l/well. Cover plate and incubate at 37°C for 1 hr.
- 4. Wash plate (Section C, Step 3).
- 5. Secondary antibody, either streptavidin anti-mouse or anti-rabbit-HRP, is diluted 1:1000 in blocking buffer. For a single 96 well plate, add 10 µl of secondary antibody stock to 9.99 ml of blocking buffer. Mix well and add 100 µl/well. Cover and incubate at 37°C for 30 min.
- 6. Wash plate (Section C, Step 3).
- 7. Add 100  $\mu l$  of TMB substrate per well. Cover and incubate at 37°C for 10 min.
- 8. Add 100 µl of STOP solution per well. Shake gently for a few seconds.
- 9. Read plate on a microplate reader at absorbance 450 nm.
  - 1. Visual Determination: Read within 30 min after adding STOP solution.
  - 2. **Spectrophotometric Determination**: Wipe underside of wells with a lint-free tissue. Read absorbance at 450 nm within 30 min after adding STOP solution.

posted January 2008

revised Sepetember 2013