SignalSilence® p42 MAP Kinase (Erk2) siRNA I

10 μM in 300 μl (100 Transfections)

Orders ■ 877-616-CELL (2355)

orders@cellsignal.com

Support ■ 877-678-TECH (8324)

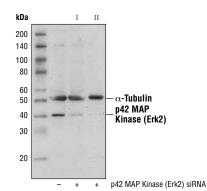
info@cellsignal.com

Web ■ www.cellsignal.com

rev. 02/17/16

For Research Use Only. Not For Use In Diagnostic Procedures.

Species Cross-Reactivity: H, (M)


Description: SignalSilence® p42 MAPK (Erk2) siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit p42 MAP Kinase expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce protein expression by western analysis.

Background: Mitogen-activated protein kinases (MAPKs) are a widely conserved family of serine/threonine protein kinases involved in many cellular programs such as cell proliferation, differentiation, motility, and death. The p44/42 MAPK (Erk1/2) signaling pathway can be activated in response to a diverse range of extracellular stimuli including mitogens, growth factors, and cytokines (1-3) and is an important target in the diagnosis and treatment of cancer (4). Upon stimulation, a sequential three-part protein kinase cascade is initiated, consisting of a MAP kinase kinase kinase (MAPKKK or MAP3K), a MAP kinase kinase (MAPKK or MAP2K), and a MAP kinase (MAPK). Multiple p44/42 MAP3Ks have been identified, including members of the Raf family as well as Mos and Tpl2/Cot. MEK1 and MEK2 are the primary MAPKKs in this pathway (5,6). MEK1 and MEK2 activate p44 and p42 through phosphorylation of activation loop residues Thr202/Tyr204 and Thr185/Tyr187, respectively. Several downstream targets of p44/42 have been identified, including p90RSK (7) and the transcription factor Elk-1 (8,9). p44/42 are negatively regulated by a family of dual-specificity (Thr/Tyr) MAPK phosphatases, known as DUSPs or MKPs (10), along with MEK inhibitors such as U0126 and PD98059.

Directions for Use: CST recommends transfection with 100 nM p42 MAPK (Erk2) siRNA I 48 to 72 hours prior to cell lysis. For transfection procedure, follow protocol provided by the transfection reagent manufacturer. Please feel free to contact CST with any questions on use.

Quality Control: Oligonucleotide synthesis is monitored base by base through trityl analysis to ensure appropriate coupling efficiency. The oligo is subsequently purified by affinity-solid phase extraction. The annealed RNA duplex is further analyzed by mass spectrometry to verify the exact composition of the duplex. Each lot is compared to the previous lot by mass spectrometry to ensure maximum lot-to-lot consistency.

Specificity/Sensitivity: SignalSilence® p42 MAP Kinase (Erk2) siRNA I will inhibit human and mouse p42 MAP Kinase (Erk2) expression.

Western blot analysis of extracts from 293 cells, transfected with 100 nM SignalSilence® Control siRNA (Unconjugated) #6568 (-), SignalSilence® p42 MAP Kinase (Erk2) siRNA I (+) or SignalSilence® p42 MAP Kinase (Erk2) siRNA II #6578 (+), using p42 MAP Kinase (Erk2) Antibody #9108 (upper) or α-Tubulin (11H10) Rabbit mAb #2125 (lower). The p42 MAP Kinase (Erk2) Antibody confirms silencing of p42 MAP Kinase (Erk2) expression, while the α-Tubulin (11H10) Rabbit mAb is used as a loading control.

Entrez-Gene ID #5594 Swiss-Prot Acc. #P28482

Storage: p42 MAPK siRNA is supplied in RNAse-free water. *Aliquot and store at -20°C*.

Please visit www.cellsignal.com for a complete listing of recommended companion products.

Background References:

- (1) Roux, P.P. and Blenis, J. (2004) *Microbiol Mol Biol Rev* 68, 320–44.
- (2) Baccarini, M. (2005) FEBS Lett 579, 3271-7.
- (3) Meloche, S. and Pouysségur, J. (2007) *Oncogene* 26, 3227–39.
- (4) Roberts, P.J. and Der, C.J. (2007) Oncogene 26, 3291-310.
- (5) Rubinfeld, H. and Seger, R. (2005) *Mol Biotechnol* 31, 151–74.
- (6) Murphy, L.O. and Blenis, J. (2006) Trends Biochem Sci 31, 268–75.
- (7) Dalby, K.N. et al. (1998) J Biol Chem 273, 1496-505.
- (8) Marais, R. et al. (1993) Cell 73, 381-93.
- (9) Kortenjann, M. et al. (1994) Mol Cell Biol 14, 4815-24.
- (10) Owens, D.M. and Keyse, S.M. (2007) Oncogene 26, 3203–13.